Skip to main content
Log in

Effect of ionospheric irregularities on accuracy of dual-frequency GPS systems

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The residual error of the ionospheric correction of signals from dual frequency GPS systems, related to a ray deviation in random ionospheric irregularities, is studied. The formulas taking into account ray deviation from a straight line in an inhomogeneous ionosphere have been obtained based on the disturbance theory when solving the ray equations. These formulas have been used to estimate the extreme accuracy of a dual frequency GPS method. The algorithm for correcting this ionospheric error of the second order using three-frequency reception has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Afraimovich, V. V. Demyanov, and T. N. Kondakova, “Degradation of GPS Performance in Geomagnetically Disturbed Conditions,” GPS-Solutions 7(2), 109–119 (2003).

    Article  Google Scholar 

  2. G. O. Ajayi, A. Hedberg, and G. Hamberg, “Accurate Determination of Ionospheric Effects on Satellite-Based Positoning Systems in Terms of Residual Error,” Radio Sci. 15(1), 1009–1016 (1980).

    Google Scholar 

  3. Ya. L. Alpert, Electromagnetic Wave Propagation and the Ionosphere (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  4. C. Alber, R. Ware, C. Rocken, and F. Solheim, “GPS-Surveying with 1 mm Precision Using Corrections for Atmospheric Slant Path Delay,” Geophys. Res. Lett. 24(15), 1859–1862 (1997).

    Article  Google Scholar 

  5. A. Belehaki, N. Jakowski, and B. W. Reinisch, Comparison of Ionospheric Ionization Measurements over Athens Using Ground Ionosonde and GPS-Derived TEC Values, Radio Sci. 38(6), 1105 (2003).

    Article  Google Scholar 

  6. F. K. Brunner and M. Gu, “An Improved Model for the Dual Frequency Ionospheric Correction of GPS Observations,” Manuscr. Geod. 16(3), 205–214 (1991).

    Google Scholar 

  7. A. El-Rabbany, Introduction to GPS: The Global Positioning System (Artech House, 2002).

  8. L. M. Erukhimov, O. I. Maksimenko, and E. N. Myasnikov, “On an Inhomogeneous Structure of the Topside Ionosphere,” Ionos. Issled., No. 30, 27–48 (1980).

    Google Scholar 

  9. U. Fernandez-Plazaola, T. M. Martin-Guerrero, J. T. Entrambasaguas-Munoz, and M. Martin-Neira, “The Null Method Applied to GNSS Three-Carrier Phase Ambiguity Resolution,” J. Geod. 78(1), 96–102 (2004).

    Article  Google Scholar 

  10. B. N. Gershman, L. M. Erukhimov, and Yu. Ya. Yashin, Wave Phenomena in the Ionosphere and Cosmic Plasma (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  11. V. E. Gherm, N. N. Zernov, S. M. Radicella, and H. J. Strangeways, “A Propagation Model for Signal Fluctuations on Transionospheric Radiolinks,” Radio Sci. 35(5), 1221–1232 (2000).

    Article  Google Scholar 

  12. M. E. Gorbunov, “Ionospheric Correction and Statistical Optimization of Radio Occultation Data,” Radio Sci. 37(5), 1084 (2002).

    Article  Google Scholar 

  13. M. Gu and F. K. Brunner, “Theory of the Two Frequency Dispersive Range Correction,” Manuscr. Geod. 15, 357–361 (1990).

    Google Scholar 

  14. R. Hatch, J. Jung, P. Enge, and B. Pervan, “Civilian GPS: The Benefits of Three Frequencies,” GPS-Solutions 3(4), 1–9 (2000).

    Article  Google Scholar 

  15. S. Kedar, G. A. Hajj, B. D. Wilson, and M. B. Heflin, “The Effect of the Second Order GPS-Ionospheric Correction of Receiver Positions,” Geophys. Res. Lett. 30(16), 1829 (2003).

    Article  Google Scholar 

  16. J. A. Klobuchar and J. M. Kunches, “Comparative Range Delay and Variability of the Earth’s Troposphere and Ionosphere,” GPS-Solutions 7(1), 55–58 (2003).

    Google Scholar 

  17. S. N. Kolesnik, M. V. Tinin, and N. T. Afanas’ev, “Imitation Modeling of Radio Propagation in a Randomly Inhomogeneous Ionosphere Taking into Account Ionospheric Sphericity,” Izv. Vyssh. Uchebn. Zaved, Radiofiz. 45(9), 731–746 (2002a).

    Google Scholar 

  18. S. N. Kolesnik, M. V. Tinin, and N. T. Afanasiev, “Statistical Characteristics of a Wave Propagating through a Layer with Random Irregularities,” Waves Random Media 12(4), 417–431 (2002b).

    Article  Google Scholar 

  19. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  20. Yu. A. Kravtsov, Z. I. Feizulin, and A. G. Vinogradov, Radio Propagation through the Earth’s Atmosphere (Radio Svyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  21. J. M. Kunches and J. A. Klobuchar “Eye on the Ionosphere: GPS after SA,” GPS-Solutions 4(3), 52–54 (2001).

    Article  Google Scholar 

  22. M. Olynik, M. G. Petrovello, M. E. Cannjn, and G. Lachapelle, “Temporal Impact of Selected GPS-Errors on Point Positioning,” GPS-Solutions 6(1–2), 45–57 (2002).

    Google Scholar 

  23. R. E. Schaal and A. P. C. Larocca, “A Methodology for Monitoring Vertical Dynamic Sub-Centimeter Displacements with GPS,” GPS-Solutions 5(3), 15–18 (2002).

    Article  Google Scholar 

  24. M. Sekido, T. Kondo, E. Kawai, and M. Imae, “Evaluation of GPS-Based Ionospheric TEC Map by Comparing with VLBI Data,” Radio Sci. 38(4), 1069 (2003).

    Article  Google Scholar 

  25. H. J. Strangeways and R. T. Ioannides, “Rigorous Calculation of Ionospheric Effects on GPS=Earth-Satellite Paths Using a Precise Path Determination Method,” Acta Geod. Geophys. 37(2), 281–292 (2002).

    Article  Google Scholar 

  26. S. Syndergaard, “A New Algorithm for Retrieving GPS Radio Occultation Total Electron Content,” Geophys. Res. Lett. 29(16), 1029 (2002).

    Article  Google Scholar 

  27. V.I. Tatarskii, Radio Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967), [in Russian].

    Google Scholar 

  28. J. B.-Y. Tsui, Fundamentals of Global Positioning System Receivers: A Software Approach, 2nd Ed. (Wiley & Sons, New Jersey, 2005).

    Google Scholar 

  29. V. V. Vorob’ev and V. Kan, “Background Fluctuations during Radio Sounding of the Ionosphere in the GPS-Microlab-1 Experiment,” Izv. Vyssh. Uchebn. Zaved., Radiofiz., 42(6), 511–523 (1999).

    Google Scholar 

  30. K. C. Yeh and C. H. Liu, “Radio-Wave Scintillations in the Ionosphere,” Proc. IEEE 70(4), 324–360 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.-Ch. Kim, M.V. Tinin, 2007, published in Geomagnetizm i Aeronomiya, 2007, Vol. 47, No. 2, pp. 254–259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.C., Tinin, M.V. Effect of ionospheric irregularities on accuracy of dual-frequency GPS systems. Geomagn. Aeron. 47, 238–243 (2007). https://doi.org/10.1134/S0016793207020120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793207020120

PACS numbers

Navigation