Skip to main content
Log in

Auroral fading structure before breakup: A review

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

This review is devoted to auroral fading before beginning of the substorm active phase. This initial stage of the active phase called breakup is accompanied by a sharp brightening of auroras and their rush toward the pole. Auroral fading before breakup was first detected in discrete auroras in the nightside sector and consisted in that a short-term decrease in brightness of an arc moving toward the equator below the level observed during the preliminary phase was observed during the substorm preliminary phase 2–3 min before breakup. During fading, the velocity of equatorward motion of auroral arcs decreased up to their complete stoppage. Auroral fading in the noon sector was registered simultaneously with fading on the Earth’s nightside before the beginning of the active phase. Short-term background fading was also observed both equatorward and poleward of an arc on the nightside. It was subsequently indicated that similar fading is observed in various geophysical phenomena. It was detected that a radar aurora signal fades before breakup, if auroral substorm is observed in a radar pattern and substorm source is located under good aspect conditions. Riometer absorption decreases simultaneously with auroral fading. Geomagnetic pulsations decay on dayside and nightside immediately before breakup. Such a multiform manifestation of fading in various geophysical phenomena indicates that fading is related to some global processes proceeding in the magnetosphere when energy accumulation in this region comes to the end before its explosive release into the polar ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aikio, V. Sergeev, M. Shukhina, et al., “Case Study of a Sequence of Substorms,” in Proceedings of the Third International Conference on Substorms (ICS-3), Versailles, France, 1996, pp. 315–320.

  2. S.-I. Akasofu, “The Development of the Auroral Substorm,” Planet. Space Sci. 12, 273–282 (1964).

    Google Scholar 

  3. S.-I. Akasofu, Polar and Magnetic Substorms (Reidel, Dordrecht, 1968; Mir, Moscow, 1971) [in Russian].

    Google Scholar 

  4. C. D. Anger and A. T. Y. Lui, “A Global View at the Polar Region on 12 December 1971,” Planet. Space Sci. 21, 873–878 (1973).

    Article  Google Scholar 

  5. J. Chamberlain, Physics of the Aurora and Airglow (Academic, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  6. V. I. Di, N. N. Bogdanov, and A. Ya. Markin, “Automated Multipoint Frame-Accurate Photometer (AMPF),” in Morphology and Physics of the Polar Ionosphere (Nauka, Leningrad, 1971), pp. 252–258 [in Russian].

    Google Scholar 

  7. H. Fukunishi, “Dynamic Relationship between Proton and Electron Auroral Substorms,” J. Geophys. Res. 80(4), 553–574 (1975).

    Google Scholar 

  8. Yu. I. Galperin, “Prebreakup Arc Morphology and the Cross-Tail Line Current Model,” in Proceedings of the First International Conference on Substorms (ICS-1), Kiruna, Sweden, 1992, pp. 263–271.

  9. R. A. Greenwald, W. L. Ecklund, and B. B. Balsly, “Diffuse Radar Aurora: Spectral Observation of Non Two-Stream Irregularities,” J. Geophys. Res. 80(1), 131–139 (1975).

    Google Scholar 

  10. C. Y. Huang and I. A. Frank, “Magnitude of B z in the Neutral Sheet of the Magnetotail,” J. Geophys. Res. 99A, 73–82 (1994).

    Google Scholar 

  11. S. I. Isaev and M. I. Pudovkin, Auroras and Processes in the Earth’s Magnetosphere (Nauka, Leningrad, 1972) [in Russian].

    Google Scholar 

  12. V. E. Ivanov and G. V. Starkov, “Spatial-Temporal Variations in Auroras during the Disturbance of December 16–17, 1971,” in Planetary Disturbance of December 16–18, 1971 (KF AN SSSR, Apatity, 1977), pp. 47–59 [in Russian].

    Google Scholar 

  13. D. Ya. Ivliev, M. I. Pudovkin, and S. A. Zaitseva, “Development of an Elementary Geomagnetic Disturbance,” Geomagn. Aeron. 10(23), 300–304 (1970).

    Google Scholar 

  14. K. Kauristie, T. I. Pulkkinen, R. J. Pellinen, et al., “Analysis of the Substorm Trigger Phase Using Multiple Ground-Based Instrumentation,” Geophys. Res. Lett. 22(15), 2065–2068 (1995).

    Article  Google Scholar 

  15. K. Kauristie, T. I. Pulkkinen, A. Huuskonen, et al., “Auroral Precipitation Fading before and at Substorm Onset: Ionospheric and Geostationary Signatures,” Ann. Geophys. 15(15), 967–983 (1997).

    Google Scholar 

  16. O. V. Khorosheva and L. A. Darchieva, “On Polar Storm Development,” Geomagn. Aeron. 10(2), 295–299 (1970).

    Google Scholar 

  17. O. V. Khorosheva, “Spatial-Temporal Distribution of Auroras and Their Relation to High-Latitude Geomagnetic Disturbances,” Geomagn. Aeron. 1(5), 695–701 (1961).

    Google Scholar 

  18. O. V. Khorosheva, Spatial-Temporal Distribution of Auroras (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  19. T. A. Kornilova, M. I. Pudovkin, and G. V. Starkov, “Auroral Fading before Breakup,” Geomagn. Aeron. 29(3), 503–506 (1989).

    Google Scholar 

  20. A. V. Kustov, E. V. Pudovkina, G. V. Starkov, et al., “Observations of Radar Aurora and Auroras on February 3 and 8 and March 15 and 16, 1978, within the Scope of the Auroral Breakup-78 Program,” in Auroral Breakup Experiment (MIM Results), (KF AN SSSR, Apatity, 1979), pp. 3–21 [in Russian].

    Google Scholar 

  21. V. A. Liperovskii and M. I. Pudovkin, Anomalous Resistance and Double Layers in Magnetospheric Plasma (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  22. A. T. Y. Lui, D. Venkatesan, C. D. Anger, et al., “Simultaneous Observations of Particle Precipitations and Auroral Emissions by ISIS-2 Satellite in the 19–24 MLT-Sector,” J. Geophys. Res. 82, 2210–2226 (1977).

    Google Scholar 

  23. A. T. Y. Lui, P. Perreaault, C. D. Anger, et al., “The Diffuse Aurora,” Planet. Space Sci. 21, 857–861 (1973).

    Google Scholar 

  24. C.-I. Meng, “Electron Precipitations and Polar Auroras,” Space Sci. Rev. 22(3), 223–300 (1978).

    Article  Google Scholar 

  25. T. H. Morse and G. J. Romick, “The Fluctuation and Fading of Auroral Arcs Preceding Auroral Substorm Onset,” Geophys. Res. Lett. 9(9), 1065–1068 (1982).

    Google Scholar 

  26. R. Pellinen and W. Heikkila, “Observations of Auroral Fading before Breakup,” J. Geophys. Res. 83A, 4207–4217 (1978).

    Google Scholar 

  27. R. J. Pellinen, W. Baumjohann, W. J. Heikkila, et al., “Event Study on Pre-Substorm Phases and Their Relation to the Energy Coupling between Solar Wind and Magnetosphere,” Planet. Space Sci. 30, 371–388 (1982).

    Article  Google Scholar 

  28. A. A. Petrukovich et al., “Two Spacecraft Observations of a Reconnection Pulse during an Auroral Breakup,” J. Geophys. Res. 103A, 47–59 (1998).

    Google Scholar 

  29. E. A. Ponomarev, Magnetospheric Substorm Mechanism (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  30. M. I. Pudovkin, G. V. Starkov, P. Smit, and R. Rijnbeek, “Dynamics of Dayside Aurorae and the Distribution of Electric Fields during an Auroral Substorm Development,” Geomagn. Aeron. 39(4), 18–22 (1999) [Geomagn. Aeron. 39, 417–421 (1999)].

    Google Scholar 

  31. M. I. Pudovkin, S. A. Zaitseva, T. A. Kornilova, and R. I. Pellinen, “Auroral Dynamics at the Equatorward Edge of the Auroral Zone,” Geomagn. Aeron. 35(3), 47–54 (1995).

    Google Scholar 

  32. T. Putte, H. Trefall, G. Kremser, et al., “On the Morphology of Energetic (> 30 keV) Electron Precipitation during the Growth Phase of Magnetospheric Substorms,” J. Atmos. Terr. Phys. 35, 739–755 (1976).

    Google Scholar 

  33. G. V. Starkov, “Mathematical Description of Auroral Luminosity Boundaries,” Geomagn. Aeron. 34(3), 80–86 (1994).

    Google Scholar 

  34. G. V. Starkov, J. Oksman, M. V. Uspensky, and A. V. Kustov, “On the Dependence of Radar Aurora Amplitude on Ionospheric Electron Density,” J. Geophys. 52(1), 49–52 (1983).

    Google Scholar 

  35. G. V. Starkov, O. M. Raspopov, and M. V. Uspensky, “Radar Aurora Fading before Breakup,” in Auroral Breakup Experiment (MIM Results) (KE AN SSSR, Apatity, 1979), pp. 21–38 [in Russian].

    Google Scholar 

  36. G. V. Starkov, Ya. I. Feldstein, and N. F. Shevnina, “Dayside Oval Auror as during Substorms,” Geomagn. Aeron. 13(1), 86–90 (1973).

    Google Scholar 

  37. V. A. Troitskaya, T. A. Plyasova-Bakounina, and A. V. Guglielmi, “Relation of Pc2-4 Pulsations to Interplanetary Magnetic Field,” Dokl. Akad. Nauk SSSR 197, 1312–1315 (1971).

    Google Scholar 

  38. N. A. Tsyganenko, “Quantitative Model of the Magnetospheric Magnetic Fields: Methods and Results,” Space Sci. Rev. 54(1), 75–186 (1990).

    Article  Google Scholar 

  39. R. S. Unwin and J. C. Keys, “Characteristics of the Radio Aurora during the Expansive Phase of Polar Substorm,” J. Atmos. Terr. Phys. 37, 55–64 (1975).

    Article  Google Scholar 

  40. M. V. Uspensky, G. V. Starkov, O. Aulamo, and K. Kaila, “Breakup Signatures in the VHF Auroral Radar Backscatter and Optical Emissions,” in Proceedings of the First Conference on Substorms (ICS1), Kiruna, Sweden, 1992, pp. 337–342.

  41. M. V. Uspensky, R. J. Pellinen, W. Baumjohann, et al., “Spatial Variations of Ionospheric Conductivity and Radar Auroral Amplitude in the Eastward Electrojet Region during Pre-Substorm Conditions,” J. Geophys. 52, 40–48 (1983a).

    Google Scholar 

  42. M. V. Uspensky, W. Baumjohann, R. J. Pellinen, and G. V. Starkov, “Experimental Data on Electric Field and Electron Density Dependence of Auroral E-Region Drift Turbulence and Radar Backscatter,” J. Geophys. 53, 198–200 (1983b).

    Google Scholar 

  43. V. G. Vorobjev, “Auroral Luminosity in the Dayside Cusp,” in Physics of Auroral Phenomena, Ed. by B. E. Bryunelli and V. Lyatsky (Nauka, Leningrad, 1988) [in Russian].

    Google Scholar 

  44. V. G. Vorobjev, V. L. Zverev, G. V. Starkov, and Ya. I. Feldstein, “Dynamics of Dayside Auroras Depending on IMF and Magnetic Activity,” Geomagn. Aeron. 28(2), 251–255 (1988b).

    Google Scholar 

  45. V. G. Vorobjev, V. L. Zverez, and G. V. Starkov, “Fading of Dayside Auroras before the Phase of Substorm Development,” Geomagn. Aeron. 32(5), 71–75 (1992).

    Google Scholar 

  46. V. G. Vorobjev, V. L. Zverev, and S. V. Leontyev, “Structure of Auroral Luminosity in the Noon Sector,” Geomagn. Aeron. 28(2), 256–261 (1988a).

    Google Scholar 

  47. V. G. Vorobjev, G. V. Starkov, and Ya. I. Feldstein, “The Auroral Oval during the Substorm Development,” Planet. Space Sci. 24, 955–965 (1976).

    Article  Google Scholar 

  48. V. G. Vorobjev, O. I. Yagodkina, G. V. Starkov, and Ya. I. Feldstein, “A Substorm in Midnight Auroral Precipitations,” Ann. Geophys. 21(12), 2271–2280 (2003).

    Google Scholar 

  49. O. I. Yagodkina and V. G. Vorobjev, “Enhancement of the Power of Dayside Geomagnetic Pulsations in Periods of Magnetospheric Substorm Onset,” Geomagn. Aeron. 40(3), 49–55 (2000) [Geomagn. Aeron. 40, 316–322 (2000)].

    Google Scholar 

  50. A. G. Yakhnin, V. A. Sergeev, I. B. Ievenko, et al., “Characteristics of the Phenomena Accompanying Local Arc Flashes,” in Magnetospheric Studies (VINITI, Moscow, 1984), No. 5, pp. 93–110 [in Russian].

    Google Scholar 

  51. R. Yumoto, “Low-Frequency Upstream Waves as a Probable Source of Low-Latitude Pc3-4 Magnetic Pulsations,” Planet. Space Sci. 33, 239–249 (1985).

    Google Scholar 

  52. S. A. Zaitseva, B. M. Kuznetsov, and M. I. Pudovkin, “Dynamics of Auroras and Currents during Substorm Development,” Geomagn. Issled. 16(1), 73–77 (1976).

    Google Scholar 

  53. V. L. Zverev, M. I. Pudovkin, and G. V. Starkov, “Auroral Motion and Field Vorticity at the Substorm Preliminary Phase,” Geomagn. Aeron. 34(2), 49–55 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Starkov, M.I. Pudovkin, T.A. Kornilova, 2006, published in Geomagnetizm i Aeronomiya, 2006, Vol. 46, No. 1, pp. 3–17.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starkov, G.V., Pudovkin, M.I. & Kornilova, T.A. Auroral fading structure before breakup: A review. Geomagn. Aeron. 46, 1–14 (2006). https://doi.org/10.1134/S0016793206010014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793206010014

PACS numbers

Navigation