Skip to main content
Log in

Geochemical Characteristics of the Upper Permian Shales in the Central Nanpanjiang Basin: Implications for Paleoenvironment Conditions

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Sedimentary environment can be restored qualitatively or semi-qualitatively by using elements or element combinations that are sensitive to paleoenvironment conditions. By measuring the major elements, trace elements and rare earth elements of 23 shale samples collected from coring wells in the Central Nanpanjiang Basin, we discussed the paleoenvironment conditions, including paleo-water depth, redox conditions, paleoclimate and provenance. La and Co contents indicate that the paleo-water depth in the Central Nanpanjiang Basin gradually deepened during the Late Permian. The ratios of U/Th, Uau, V/Cr, Ni/Co and V/Sc suggest that the Central Nanpanjiang Basin was in an oxic condition in the Late Permian, which was stable during the Permian Longtan and Dalong depositional periods. C-value (Climate index value) and binary diagrams of Sr/Cu and Ga/Rb show that the Central Nanpanjiang Basin was characterized by a warm and arid climate during the depositional of the Permian Longtan Formation, a warm and humid climate in the lower part of the Dalong Formation, and a warm and arid climate again in the upper part of the Dalong Formation. The chemical index of alteration (CIA), plagioclase index of alteration (PIA), index of chemical variability (ICV), and Th/U and K/Rb values can indicate the geological tectonic settings of source regions. From the Longtan period to the Dalong period, the small CIA amplitude and relatively stable ICV indicate that chemical weathering in the source area was constantly slighty weak. However, Th/U increased significantly but PIA increased slightly in the lower Dalong Formation, indicating an obvious climate change in the early deposition of the Dalong Formation. In addition, the geochemical discrimination calculation and plots show that the provenance of the studied shales was related to felsic volcanic rocks and the tectonic settings of the Upper Permian shale source areas in the Central Nanpanjiang Basin were mainly oceanic island arc and continental arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are openly available.

REFERENCES

  1. A. K. Adegoke, H. A. Wan, M. H. Hakimi, and B. M. Yandoka, “Geochemical characterization of Fika Formation in the Chad (Bornu) basin, Northeastern Nigeria: implications for depositional environment and tectonic setting,” Appl. Geochem. 43, 1–12 (2014).

    Article  Google Scholar 

  2. A. Akinlua, S. A. Adekola, O. Swakamisa, O. A. Fadipe, and S. A. Akinyemi, “Trace element characterisation of Cretaceous Orange Basin hydrocarbon source rocks,” Appl. Geochem. 25(10), 1587–1595 (2010).

    Article  Google Scholar 

  3. C. Allègre, and G. Michard, Introduction to Geochemistry, (Geophysics and Astrophysics Monographs 1974).

    Book  Google Scholar 

  4. J. S. Armstrong-Altrin, M. L. Machain-Castillo, L. Rosales-Hoz, A. Carranza-Edwards, J. A. Sanchez- Cabeza, and A. C. Ruiz-Fernandez, “Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis,” Cont. Shelf Res. 95, 15–26 (2015).

    Article  Google Scholar 

  5. J. S. Armstrong-Altrin, R. Nagarajan, J. Madhavaraju, L. Rosalez-Hoz, Y. I. Lee, V. Balaram, A. Cruz-Martinez, and G. Avila-Ramirez, “Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source–area weathering, provenance, and tectonic setting,” Comptes Rendus Geoscience, 345, 185–202 (2013).

    Article  Google Scholar 

  6. Y. Y. Bai, Z. J. Liu, P. C. Sun, R. Liu, X. F. Hu, H. Q. Zhao, and Y. B. Xu, “Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China,” J. Asian Earth Sci. 97, 89–101 (2015).

    Article  Google Scholar 

  7. B. Beckmann, S. Flögel, P. Hofmann, M. Schulz, and T. Wagner, “Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response,” Nature 437, 241–244 (2005).

    Article  Google Scholar 

  8. M. R. Bhatia, “Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control,” Sediment. Geol. 45(1–2), 97–113 (1985).

    Article  Google Scholar 

  9. W. H. Blackburn, R. V. Metcalf, and P. C. Ragland, “Geochemical evolution of the Precambrian Old Rag Granite, Virginia, U.S.A.: testing a U/Th exploration model,” Chem. Geol. 111, 177–206 (1994).

    Article  Google Scholar 

  10. K. C. Condie, “Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  11. R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  12. R. L. Cullers, “Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA,” Chem. Geol. 191(4), 305–327 (2002).

    Article  Google Scholar 

  13. J. H. Ding, J. C. Zhang, X. Tang, Z. P. Huo, S. B. Han, Y. Lang, Y. Y. Zheng, X. Q. Li, and T. Liu, (2018). “Elemental geochemical evidence for depositional conditions and organic matter enrichment of black rock series strata in an inter-platform basin: the Lower Carboniferous Datang Formation, Southern Guizhou, Southwest China,” Minerals 8(11), 480–509.

    Article  Google Scholar 

  14. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  15. P. A. Floyd, and B. E. Leveridge, “Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones,” J. Geo. Soc. London 144, 531–542 (1987).

    Article  Google Scholar 

  16. F. Galarraga, J. F. Llamas, A. Martinez, M. Martinez, G. Marquez, and K. Reategui, “V/Ni ratio as a parameter in paleoenvironmental characterization of non-mature medium-crude oils from several Latin American basins,” J. Petrol. Sci. Eng. 61, 9–14 (2008).

    Article  Google Scholar 

  17. D. Y. Gong, Y. Song, Y. Z. Wei, Y. W. Liu, Y. W. Wu, L. J. Zhang, and H. J. Cui, “Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the Southeastern Junggar Basin, NW China: implications for new hydrocarbon explorations,” Int. J. Coal Geol. 202, 171–189. (2019).

    Article  Google Scholar 

  18. Y. F. Gu, G. Y. Cai, D. F. Hu, Z. H. Wei, R. B. Liu, J. Han, Z. W. Fan, J. Y. Hao, and Y. Q. Jiang, Geochemical and geological characterization of Upper Permian Linghao Formation shale in Nanpanjiang Basin, SW China. Front. Earth Sci. 10, 883146 (2022a).

    Article  Google Scholar 

  19. Y. F. Gu, X. T. Li, L. Qi, S. X. Li, Y. Q. Jiang, Y. H. Fu, and X. S. Yang, “Sedimentology and Geochemistry of the Lower Permian Shanxi Formation Shan 23 Submember Transitional Shale, Eastern Ordos Basin, North China,” Front. Earth Sci. 10, 859845 (2022b).

    Article  Google Scholar 

  20. J. R. Hatch, and J. S. Leventhal, “Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA,” Chem. Geol. 99, 65–82 (1992).

    Article  Google Scholar 

  21. J. J. Hu, Q. Li, J. Li, J. Huang, and D. S. Ge, “Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet,” Geol. J. 51, 560–571 (2016).

    Article  Google Scholar 

  22. B. Jones, and D. C. Manning, “Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones,” Chem. Geol. 111, 111–129 (1994).

    Article  Google Scholar 

  23. H. Kacmaz, “Major, trace and rare earth element (REE) characteristics of tuffs in the Yenice-Saraycık area (Demirci, Manisa), Western Anatolia, Turkey,” J. Geochem. Explor. 168, 169–176 (2016).

    Article  Google Scholar 

  24. Y. J. Kang, Master’s thesis (Chengdu Univ. Tech., Chengdu, 2017) [in Chinese].

  25. H. Kimura, and Y. Watanabe, “Ocean anoxia at the Precambrian–Cambrian boundary,” Geology 29, 995–998 (2001).

    Article  Google Scholar 

  26. D. J. Lehrmann, D. H. Chaikin, P. Enos, M. Minzoni, J. L. Payne, M. Yu, A. Goers, T. Wood, P. Richter, B. M. Kelley, X. M. Li, Y. J. Qin, L. Y. Liu, and G. Lu, “Patterns of basin fill in Triassic turbidites of the Nanpanjiang basin: Implications for regional tectonics and impacts on carbonate-platform evolution,” Basin Res. 27(5), 587–612 (2015).

    Article  Google Scholar 

  27. B. Li, and X. M. Zhu, “Petroleum geology and exploration potential of Volga-Ural Basin: one typical foreland,” Petroleum geology and experiment, 34(1), 47–52 (2012) [in Chinese].

  28. Q. S. Liang, J. C. Tian, X. Zhang, X. Sun, and H. L. Chang, “Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation, Taikang Uplift, southern North China Basin,” Mar. Petrol. Geol. 98, 229–242 (2018).

    Article  Google Scholar 

  29. K. Lodders, and B. Jr. Fegley, The planetary scientist’s companion, (Oxford University Press, Oxford 1998)

    Book  Google Scholar 

  30. J. Long, and K. L. Luo, “Trace element distribution and enrichment patterns of Ediacaran-early Cambrian, Ziyang selenosis area, Central China: Constraints for the origin of selenium,” J. Geochem. Explor. 172, 211–230 (2017).

    Article  Google Scholar 

  31. S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” Geol. Soc. Am. 284, 21–40 (1993).

    Google Scholar 

  32. S. M. McLennan, S. Hemming, S. R. Taylor, and K. A. Erikson, “Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America,” Geochim. Cosmochim. Acta 59, 1153–1177 (1995).

    Article  Google Scholar 

  33. A. A. Migdisov, Yu. A. Balashov, I. V. Sharkov, O. G Sherstennikov, and A. B. Ronov, “Abundance of the REE in the Main Rock Types in the Sedimentary Cover of the Russian Platform,” Geochemistry Int. 32 (1), 20–36 (1995).

    Google Scholar 

  34. G. A. Mizens, and A. V. Maslov, “Pelitic rocks from the molasse formation of the Southern Ural segment of the Uralian Foredeep: lithogeochemistry, provenance composition, and paleotectonic reconstructions,” Geochemistry Int. 52 (11), 962–978 (2014).

    Article  Google Scholar 

  35. G. A. Mizens, and A. V. Maslov, “Sandstones from the molasse formation in the southern part of the Uralian Foredeep,” Lithol. Miner. Resour. 50 (5), 407–431 (2015).

    Article  Google Scholar 

  36. G. A. Mizens, “On the stages of formation of the Uralian Foredeep,” Geotectonics 31(5), 374–385 (1997a).

    Google Scholar 

  37. G. A. Mizens, Upper Paleozoic Flysch of the Western Urals (UrO RAN, Yekaterinburg, 1997b) [in Russian].

    Google Scholar 

  38. H. W. Nesbitt, and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299 (5885), 715–717 (1982).

    Article  Google Scholar 

  39. S. M. Rimmer, J. A. Thompson, S. A. Goodnight, and T. L. Robl, “Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 215, 125–154 (2004).

    Article  Google Scholar 

  40. B. P. Roser, and R. J. Korsch, “Determination of tectonic setting of Sandstones-mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  41. D. K. Roy, and B. P. Roser, “Climatic control on the composition of Carboniferous Permian Gondwana sediments, Khalaspir basin, Bangladesh,” Gondwana Res. 23, 1163–1171 (2013).

    Article  Google Scholar 

  42. R. L. Rudnick, and S. Gao, Composition of the continental crust. In: Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Pergamon, Oxford, 2003), vol. 3, pp. 1–64.

    Google Scholar 

  43. B. M. Sarki Yandoka, W. H. Abdullah, M. B. Abubakar, M. H. Hakimi, and A. K. Adegoke, “Geochemical characterisation of Early Cretaceous lacustrine sediments of Bima Formation, Yola sub-basin, Northern Benue trough, NE Nigeria: organic matter input, preservation, paleoenvironment and palaeoclimatic conditions,” Mar. Petrol. Geol. 61, 82–94 (2015).

    Article  Google Scholar 

  44. L. J. Shen, J. Wang, H. L. Shen, X. G. Fu, Y. L. Wan, C. Y. Song, S. Q. Zeng, J. Dai, and D. Wang, “Geochemistry of the Eocene clastic sediments (Suonahu formation) in the north Qiangtang basin, Tibet: implications for paleoclimate conditions, provenance and tectonic setting,” Can. J. Earth Sci. 57, number 1 (2020).

  45. S. R. Taylor, and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific Publications, Oxford, 1985).

    Google Scholar 

  46. P. P. Van De Kamp, and B. E. Leake, Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin, (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  47. Z. W. Wang, J. Wang, F. Yu., X. G. Fu., W. B. Chen, W. Z. Zhan, and C. Y. Song, “Geochemical characteristics of the Upper Triassic black mudstones in the eastern Qiangtang Basin, Tibet: Implications for petroleum potential and depositional environment,” J. Petrol. Sci. Eng. 207 (12), 109180 (2021a).

    Article  Google Scholar 

  48. Z. W. Wang, F. Yu., J. Wang, X. G. Fu., W. B. Chen, S. Q. Zeng, and C. Y. Song, “Palaeoenvironment evolution and organic matter accumulation of the Upper Triassic mudstones from the eastern Qiangtang Basin (Tibet), eastern Tethys,” Mar. Petrol. Geol. 130, 105112 (2021b).

    Article  Google Scholar 

  49. Z. W. Wang, W. P. Li, J. Wang, H. Y. Wei, X. G. Fu, C. Y. Song, W. Z. Zhan, and H. F. Sun, “Controls on organic matter accumulation in marine mudstones from the Lower Permian Zhanjin Formation of the Qiangtang Basin (Tibet), eastern Tethys,” Mar. Petrol. Geol. 138, 105556 (2022).

    Article  Google Scholar 

  50. P. B. Wignall, and K. J. Myers, “Interpreting the benthic oxygen levels in mudrocks, a new approach,” Geology 16, 452–455 (1988).

    Article  Google Scholar 

  51. D. J. Wronkiewicz, and K. C. Condie, (1990). “Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal supergroups, South Africa: cratonic evolution during the early Proterozoic,” Geochim. Cosmochim. Acta 54, 343–354.

    Article  Google Scholar 

  52. W. J. Xia, Q. R. Yan, Z. J. Xiang, L. Xia, W. Jiang, W. Wei, X. J. Li, and B. Zhou, “Sedimentary characteristics of the Early-Middle Triassic on the south flank of the Xilin faulted block in the Nanpanjiang basin and its tectonic implications,” Acta Petrol. Sin. 34 (7), 2119–2139 (2018).

    Google Scholar 

  53. G. L. Xie, Y. L. Shen, S. G. Liu, and W. D. Hao, “Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu Formation and Oligocene Huagang Formation in Xihu Sag, East China Sea Basin: implications for provenance, depositional conditions and paleoclimate,” Mar. Petrol. Geol. 92, 20–36 (2018).

    Article  Google Scholar 

  54. Q. L. Xu, B. Liu, Y. S. Ma, X. M. Song, Y. J. Wang, and Z. X. Chen, “Geological and geochemical characterization of lacustrine shale: a case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China,” J. Nat. Gas. Sci. Eng. 47, 124–139 (2017).

    Article  Google Scholar 

  55. L. F. Zhang, D. Z. Dong, Z. Qiu, C. J. Wu, Q. Zhang, Y. M. Wang, D. X. Liu, Z. Deng, S. W. Zhou, and S. Q. Pan, Sedimentology and geochemistry of Carboniferous-Permian marine-continental transitional shales in the eastern Ordos Basin, North China,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 571, 110389 (2021).

    Article  Google Scholar 

  56. Z. Y. Zhao, J. H. Zhao, H. J. Wang, J. D. Liao, and C. M. Liu, “Distribution characteristics and applications of trace elements in Junggar Basin,” Natural gas exploration and development 30, 30–33 (2007) [in Chinese].

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewers and associated editor Dr. M.I. Dinu for their constructive reviews, which have significantly improved the quality of this manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (grant no. 41972121), and the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance (no. 020CX010100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Gu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lijun Shen, Gu, Y., Wei, Z. et al. Geochemical Characteristics of the Upper Permian Shales in the Central Nanpanjiang Basin: Implications for Paleoenvironment Conditions. Geochem. Int. (2024). https://doi.org/10.1134/S001670292403008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S001670292403008X

Keywords:

Navigation