Skip to main content
Log in

Geochemistry and Fertility Assessment of Sub-Volcanic Rocks from the Bam Area, North of the Kerman Magmatic Copper Belt, SE Iran

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Bam area is located north of the Kerman magmatic copper belt (KMCB) in SE Iran. It belongs to the Urumieh-Dothtar magmatic assemblage (UDMA) that hosts many large Cu-porphyry deposits such as Sarchemeh, Iju, Meiduk, Pakram, and Dalli. The area comprises volcanic and volcano-sedimentary rocks of the Eocene intruded by some sub-volcanic patches. Geochemical analyses show that the sub-volcanic rocks are calc-alkaline granodiorites formed on an active continental margin. The rare earth elements (REE) distribution patterns are differentiated (LaN/YbN = 4–31), having weak to moderate Eu negative anomalies (Eu/Eu* = 0.4–0.8) and flat heavy rare earth element (HREE) sections. The MgO, SiO2, La, Yb, Sr, Sm, and Y contents of these rocks are consistent with adakite-like magmas formed by partial melting of thickened lower crust containing no garnet. Negative correlations of Al2O3, Y and Ba with SiO2 and moderate to weak Eu negative anomalies, indicate the role of hornblende, K-feldspar, and plagioclase fractionation in the formation of these rocks. Geochemical features of the Bam sub-volcanic rocks are similar to those of the Cu-porphyry deposits from UDMA and Malmyzh deposit from eastern Russia, indicating fertility of these rocks for Cu mineralization that should be considered in the future explorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. Agard, J. Omrani, L. Jolivet, and F. Mouthereau, “Convergence history across Zagros (Iran): constraints from collisional and earlier deformation,” Int. J. Earth Sci. 94, 401–19 (2005).

    Article  CAS  Google Scholar 

  2. M. Alavi, “Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution,” Am. J. Sci. 304 (1), 1–20 (2004).

    Article  Google Scholar 

  3. A. Aghanabati, J. Eftekharnejad, M. Samimi Namin, and S. Arshadi, Geological Map of Bam. Scale 1 : 100000, (Geol. Surv. Iran, Tehran, 1993).

  4. A. Alirezaei, M. Arvin, and S. Dargahi, “Adakite-like signature of porphyry granitoid stocks in the Meiduk and Parkam porphyry copper deposits, NE of Shahr-e-Babak, Kerman, Iran: Constrains on geochemistry,” Ore Geol. Rev. 88, 370–83 (2017).

    Article  Google Scholar 

  5. R. Altherr, and W. Siebel, “I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece,” Contrib. Mineral. Petrol. 143 (4), 397–415 (2002).

    Article  CAS  Google Scholar 

  6. E. Anders, and N. Grevesse, “Abundances of the elements: Meteoritic and solar,” Geochim. Cosmochim. Acta. 53 (1), 197–214 (1989).

    Article  CAS  Google Scholar 

  7. J. G. Arth, and G. N. Hanson, “Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths,” Contrib. Mineral. Petrol. 37, 161–74 (1972).

    Article  CAS  Google Scholar 

  8. S. Asadi, F. Moore, and A. Zarasvandi, “Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt, Kerman region, Iran: a review,” Earth Sci. Rev. 138, 25–46 (2014).

    Article  CAS  Google Scholar 

  9. S. Asadi, “Triggers for the generation of post-collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data,” Gondwana Res. 64, 97–121 (2018).

    Article  CAS  Google Scholar 

  10. J. A. Baldwin, and J. A. Pearce, “Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes,” Econ. Geol. 77(3), 664–74 (1982).

    Article  CAS  Google Scholar 

  11. N. D. Barber, M. Edmonds, F. Jenner, A. Audétat, and H. Williams, “Amphibole control on copper systematics in arcs: Insights from the analysis of global datasets,” Geochim. Cosmochim. Acta. 307, 192–211 (2021).

    Article  CAS  Google Scholar 

  12. M. Berberian, and G. C. P. King, “Towards a paleogeography and tectonic evolution of Iran: Reply,” Can. J. Earth Sci. 18 (11), 1764-6 (1981).

    Article  Google Scholar 

  13. G. C. Brown, R. S. Thorpe, and P. C. Webb, “The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources,” J. Geol. Soc. 141 (3), 413–426 (1984).

    Article  CAS  Google Scholar 

  14. P. R. Castillo, “Adakite petrogenesis,” Lithos 134, 304–316 (2012).

    Article  Google Scholar 

  15. J. Chen, J. Xu, B. Wang, Z. Yang, J. Ren, H. Yu, H. Liu, and Y. Feng, “Geochemical differences between subduction-and collision-related copper-bearing porphyries and implications for metallogenesis,” Ore Geol. Rev. 70, 424–37 (2015).

    Article  Google Scholar 

  16. S. Dargahi, M. Arvin, Y. Pan, and A. Babaei, “Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian–Eurasian continental collision,” Lithos 115 (1–4), 190–204 (2010).

    Article  CAS  Google Scholar 

  17. H. D. De la Roche, J. t. Leterrier, P. Grandclaude, and M. Marchal, “A classification of volcanic and plutonic rocks using R1R2-diagram and major-element analyses–its relationships with current nomenclature,” Chem. Geol. 29 (1–4), 183–210 (1980).

    Article  CAS  Google Scholar 

  18. M. J. Defant, and M. S. Drummond, “Derivation of some modern arc magmas by melting of young subducted lithosphere,” Nature 347 (6294), 662–665 (1990).

    Article  CAS  Google Scholar 

  19. M. J. Defant, and M. S. Drummond, “Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc,” Geology 21 (6), 547–50 (1993).

    Article  CAS  Google Scholar 

  20. J. G. Du, Y. S. Du, and Y. Cao, “Important role of hornblende fractionation in generating the adakitic magmas in Tongling, Eastern China: evidence from amphibole megacryst and cumulate xenoliths and host gabbros,” Int. Geol. Rev. 60 (11–14), 1381–1403 (2018).

    Article  Google Scholar 

  21. J. Du, J. Mao, and Y. Du, “Redox state and water content changes of magma during amphibole accumulation process: Tongling example,” Ore Geol. Rev. 139, 104523 (2021).

    Article  Google Scholar 

  22. S. Foley, M. Tiepolo, and R. Vannucci, “Growth of early continental crust controlled by melting of amphibolite in subduction zones,” Nature 417 (6891), 837–40 (2002).

    Article  CAS  Google Scholar 

  23. P. Gao, Y.-F. Zheng, C. Yakymchuk, Z.-F. Zhao, and Z.‑Y. Meng, “The effects of source mixing and fractional crystallization on the composition of Eocene granites in the Himalayan Orogen,” J. Petrol. 62 (7), egab037 (2021).

  24. A. Ghasemi, and C. J. Talbot, “A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran),” J. Asian Earth Sci. 26 (6), 683–693 (2006).

    Article  Google Scholar 

  25. M. Golestani, M. H. Karimpour, A. M. Shafaroudi, and M. R. H. Shahri, “Geochemistry, U-Pb geochronology and Sr-Nd isotopes of the Neogene igneous rocks, at the Iju porphyry copper deposit, NW Shahr-e-Babak, Iran,” Ore Geol. Rev. 93, 290–307 (2018).

    Article  Google Scholar 

  26. B. R. Hacker, P. B. Kelemen, and M. D. Behn, “Continental Lower Crust,” Annu. Rev. Earth Planet. Sci. 43 (1), 167–205 (2015).

    Article  CAS  Google Scholar 

  27. J. Hassanzadeh, and B. P. Wernicke, “The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions,” Tectonics 35 (3), 586–621 (2016).

    Article  Google Scholar 

  28. A. Hezarkhani, “Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu–Mo deposit, Iran: evidence from fluid inclusions,” J. Asian Earth Sci. 28 (4–6), 409–422 (2006).

    Article  Google Scholar 

  29. M. R. Hosseini, M. Ghaderi, S. Alirezaei, and W. Sun, “Geological characteristics and geochronology of the Takht-e-Gonbad copper deposit, SE Iran: a variant of porphyry type deposits,” Ore Geol. Rev. 86, 440–458 (2017).

    Article  Google Scholar 

  30. Z. Hou, H. Zhang, X. Pan, and Z. Yang, “Porphyry Cu (‒Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain,” Ore Geol. Rev. 39 (1), 21–45 (2011).

    Article  Google Scholar 

  31. T. N. Irvine, and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8 (5), 523–548 (1971).

    Article  CAS  Google Scholar 

  32. M. H. Karimpour, and M. Sadeghi, “A new hypothesis on parameters controlling the formation and size of porphyry copper deposits: Implications on thermal gradient of subducted oceanic slab, depth of dehydration and partial melting along the Kerman copper belt in Iran,” Ore Geol. Rev. 104, 522–539 (2019).

    Article  Google Scholar 

  33. O. Karsli, A. Dokuz, İ. Uysal, F. Aydin, R. Kandemir, and J. Wijbrans, “Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination,” Lithos 114 (1–2), 109–120 (2010).

    Article  CAS  Google Scholar 

  34. S. M. Kay, and C. Mpodozis, “Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust,” GSA Today 11, 4–9 (2001).

    Article  Google Scholar 

  35. O. Laurent, H. Martin, J.-F. Moyen, and R. Doucelance, “The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga,” Lithos 205, 208–235 (2014).

    Article  CAS  Google Scholar 

  36. R. R. Loucks, “Distinctive composition of copper-ore-forming arc magmas,” Aust. J. Earth Sci. 61 (1), 5–16 (2014).

    Article  CAS  Google Scholar 

  37. Q. Ma, J. P. Zheng, Y.-G. Xu, W. L. Griffin, and R.-S. Zhang, “Are continental “adakites” derived from thickened or foundered lower crust?,” Earth Planet. Sci. Lett. 419, 125–133 (2015).

    Article  CAS  Google Scholar 

  38. M. Maanijou, F. Aliani, M. Miri, and D. R. Lentz, “Geochemistry and petrology of igneous assemblage in the south of Qorveh area, west Iran,” Geochemistry 73 (2), 181–196 (2013).

    Article  CAS  Google Scholar 

  39. H. Martin, “Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas,” Geology 14 (9), 753–756 (1986).

    Article  CAS  Google Scholar 

  40. H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen, and D. Champion, “An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution,” Lithos 79 (1–2), 1–24 (2005).

    Article  CAS  Google Scholar 

  41. W. F. McDonough, and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120 (3–4), 223–253 (1995).

    Article  CAS  Google Scholar 

  42. B. I. A. McInnes, N. J. Evans, F. Q. Fu, S. Garwin, E. Belousova, W. L. Griffin, A. Bertens, D. Sukarna, S. Permanadewi, and R. L. Andrew, “Thermal history analysis of selected Chilean, Indonesian, and Iranian porphyry Cu–Mo–Au deposits,” in Super Porphyry Copper and Gold Deposits: A Global Perspective, Ed. by T. M. Porter, (Geoconsultancy Publishing, 2005), pp. 27–42.

    Google Scholar 

  43. M. Mohajjel, C. L. Fergusson, and M. R. Sahandi, “Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, Western Iran,” J. Asian Earth Sci. 21 (4), 397–412 (2003).

    Article  Google Scholar 

  44. R. Moritz, H. Rezeau, M. Ovtcharova, R. Tayan, R. Melkonyan, S. Hovakimyan, V. Ramazanov, D. Selby, A. Ulianov, and M. Chiaradia, “Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan,” Gondwana Res. 37, 465–503 (2016).

    Article  CAS  Google Scholar 

  45. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25 (4), 956–983 (1984).

    Article  CAS  Google Scholar 

  46. M. Rezaei, and A. Zarasvandi, “Combined feldspar-destructive processes and hypogene sulfide mineralization in the porphyry copper systems: potentials for geochemical signals of ore discovering,” Iran. J. Sci. Tech., 46 (5), 1413–1424 (2022).

    Article  Google Scholar 

  47. J. P. Richards, and R. Kerrich, “Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis,” Econ. Geol. 102 (4), 537–576 (2007).

    Article  CAS  Google Scholar 

  48. J. P. Richards, T. Spell, E. Rameh, A. Razique, and T. Fletcher, “High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential: Examples from the Tethyan arcs of central and eastern Iran and western Pakistan,” Econ. Geol. 107 (2), 295–332 (2012).

    Article  CAS  Google Scholar 

  49. P. S. Ross, and J. H. Bédard, “Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams,” Can. J. Earth Sci. 46(11), 823-39 (2009).

    Article  CAS  Google Scholar 

  50. A. G. Rossiter, and C. M. Gray, “Barium contents of granites: key to understanding crustal architecture in the southern Lachlan Fold Belt?,” Aust. J. Earth Sci. 55 (4), 433–448 (2008).

    Article  CAS  Google Scholar 

  51. B. Shafiei, M. Haschke, and J. Shahabpour, “Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran,” Mineral. Deposita 44, 265–283 (2009).

    Article  CAS  Google Scholar 

  52. S. J. Shand, Eruptive Rocks: Their Genesis, Composition, and Classification, with a Chapter on Meteorites, (Wiley, 1943).

    Google Scholar 

  53. S. G. Soloviev, S. G. Kryazhev, S. S. Dvurechenskaya, V. E. Vasyukov, D. A. Shumilin, and K. I. Voskresensky, “The superlarge Malmyzh porphyry Cu-Au deposit, Sikhote-Alin, eastern Russia: Igneous geochemistry, hydrothermal alteration, mineralization, and fluid inclusion characteristics,” Ore Geol. Rev. 113, 103112 (2019).

    Article  Google Scholar 

  54. N. Taghipour, A. Aftabi, and R. Mathur, “Geology and Re-Os Geochronology of Mineralization of the Miduk Porphyry Copper Deposit, Iran,” Resour. Geol. 58 (2), 143–60 (2008).

    Article  Google Scholar 

  55. R. Wang, J. P. Richards, Z. Hou, Z. Yang, and S. A. DuFrane, “Increased magmatic water content–-the key to Oligo-Miocene porphyry Cu-Mo±Au formation in the eastern Gangdese belt, Tibet,” Econ. Geol. 109 (5), 1315–1339 (2014).

    Article  CAS  Google Scholar 

  56. D. L. Whitney, and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Min. 95 (1), 185–187 (2010).

    Article  CAS  Google Scholar 

  57. A. Zarasvandi, M. Rezaei, J. Raith, D. Lentz, A. M. Azimzadeh, and H. Pourkaseb, “Geochemistry and fluid characteristics of the Dalli porphyry Cu–Au deposit, Central Iran,” J. Asian Earth Sci. 111, 175–191 (2015a).

    Article  Google Scholar 

  58. A. Zarasvandi, M. Rezaei, M. Sadeghi, D. Lentz, M. Adelpour, and H. Pourkaseb, “Rare earth element signatures of economic and sub-economic porphyry copper systems in Urumieh–Dokhtar Magmatic Arc (UDMA), Iran,” Ore Geol. Rev. 70, 407–23 (2015b).

    Article  Google Scholar 

  59. A. Zarasvandi, M. Rezaei, J. G. Raith, S. Asadi, and D. Lentz, “Hydrothermal fluid evolution in collisional Miocene porphyry copper deposits in Iran: Insights into factors controlling metal fertility,” Ore Geol. Rev. 105, 183–200 (2019a).

    Article  Google Scholar 

  60. A. Zarasvandi, M. Heidari, J. Raith, M. Rezaei, and A. Saki, “Geochemical characteristics of collisional and pre-collisional porphyry copper systems in Kerman Cenozoic Magmatic Arc, Iran: Using plagioclase, biotite and amphibole chemistry,” Lithos 326, 279–297 (2019b).

    Article  Google Scholar 

  61. Y. F. Zheng, “Subduction zone geochemistry,” Geosci. Front. 10 (4), 1223–1254 (2019).

    Article  CAS  Google Scholar 

  62. J. I. E. Zhu, Q. Li, X. Chen, H. Tang, Z. Wang, Y. Chen, S. Liu, B. Xiao, and J. Chen, “Geochemistry and petrogenesis of the early Palaeozoic appinite-granite complex in the Western Kunlun Orogenic Belt, NW China: implications for Palaeozoic tectonic evolution,” Geol. Mag. 155 (8), 1641–1666 (2018).

    Article  CAS  Google Scholar 

  63. M. Ziaii, S. Safari, T. Timkin, V. Voroshilov, and T. Yakich, “Identification of geochemical anomalies of the porphyry–Cu deposits using concentration gradient modelling: a case study, Jebal-Barez area, Iran,” J. Geochem. Explor. 199, 16–30 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful Shahid Chamran University of Ahvaz for support the research (grant no. SCU.EG1400.44295). The authors are grateful to Dr. S.A. Silantyev for handling of the manuscript as an associated editor. We also appreciate Dr. B.A. Bazylev and Dr. Mohsen Rezaei for their useful comments that greatly improved the paper.

Funding

There is no funding for the present research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirmohammad Miri, Alireza Zarasvandi or Samaneh Razi Jalali.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmohammad Miri, Zarasvandi, A. & Jalali, S.R. Geochemistry and Fertility Assessment of Sub-Volcanic Rocks from the Bam Area, North of the Kerman Magmatic Copper Belt, SE Iran. Geochem. Int. 62, 300–313 (2024). https://doi.org/10.1134/S0016702924030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030078

Keyword:

Navigation