Skip to main content
Log in

Geochemistry and Formation Conditions of Mesoarchean Banded Iron Formations (BIF-1) from the Kostomuksha Greenstone Belt, Karelian Craton

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Three variably old groups of banded iron formation (BIF) are known in the Kostomuksha Greenstone Belt (KGB) of the Karelian Craton. This paper deals with the earliest of them, Mesoarchean (2.87–2.81 Ga) BIF-1. BIF-1 occurs among the komatiite–basalt unit of the KGB. BIF-1 consists mainly of quartz and magnetite, with varying amounts of amphibole, biotite, and garnet; the variations of SiO2 (48.3–58.6 wt %) and \({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{T}}}\) (21.34–33.82 wt %) suggest that the rocks are BIF. BIF-1 of the KGB, as well as most Archean BIFs, contain high \({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{T}}}\) concentration, display a contrasting positive Eu anomaly, lack of Ce anomaly, and the depletion of LREE relative to HREE. However, they differ from other BIFs in the higher Al2O3, TiO2, MgO, K2O, Cr, Ni, Zr, Ba, Cu and Zn concentrations. BIF-1 was formed in a marine basin at an anoxic atmosphere due to hydrothermal fluids, the proportion of which varies from 20 to 80%, and a terrigenous component derived mainly from basalts, komatiites, and dacites of host rocks. Mesoarchean BIF-1 of the KGB was accumulated in a small rift structures within an oceanic volcanic plateau, the formation of which is associated with the influence of a mantle plume on the oceanic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. B. W. Alexander, M. Bau, P. Andersson, and P. Dulski, “Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa,” Geochim. Cosmochim. Acta 72, 378–394 (2008).

    Article  CAS  Google Scholar 

  2. M. Bau and P. Dulski, “Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa,” Precambrian Res. 79, 37–55 (1996).

    Article  CAS  Google Scholar 

  3. A. Bekker and A. Kovalick, “Ironstones and iron formations,” In Encyclopedia of Geology, 2nd Edition, Ed. by D. Alderton and S. A. Elias (Academic Press, Oxford, 2021), pp. 914–921.

    Google Scholar 

  4. A. Bekker, J. F. Planavsky, N. Slack, B. Krapez, A. Hofmann, K. O. Konhauser, and O. J. Rouxel, “Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes,” Econ. Geol. 105, 467–508 (2010).

    Article  CAS  Google Scholar 

  5. E. V. Bibikova, I. A. Bergman, T. V. Gracheva, and V. A. Makarova, “Archean age of iron ore formations of Karelia,” Geochronology and Problems of Ore Formation (Nauka, Moscow, 1977), pp. 25–32 [in Russian].

    Google Scholar 

  6. E. V. Bibikova, A. V. Samsonov, A. Yu. Petrova, and T. I. Kirnozova, “The Archean geochronology of western Karelia,” Stratigraphy. Geol. Correlation 13 (5), 459–475 (2005).

    Google Scholar 

  7. Yu. B. Bogdanov, State Geological Map of the Russian Federation on a Scale 1 : 1 000 000 (3rd Generation). Baltic Series. Sheet Q-(35), 36–Apatity. Explanatory Note (St. Petersburg, 2012) [in Russian].

  8. R. Bolhar, B. S. Kamber, S. Moorbath, C. M. Fedo, and M. J. Whitehouse, “ Characterisation of early Archaean chemical sediments by trace element signatures,” Earth Planet. Sci. Lett. 222 (1), 43–60 (2004).

    Article  CAS  Google Scholar 

  9. A. G. Cairns-Smith, “Precambrian solution photochemistry, inverse segregation, and banded iron formations,” Nature 76, 807–808 (1978).

    Article  Google Scholar 

  10. D. E. Canfield, “The early history of atmospheric oxygen homage to Robert M. Garrels,” Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  CAS  Google Scholar 

  11. V. M. Chernov, Stratigraphy and Conditions of Sedimentation of Volcanogenic (Leptite) Banded Iron Formation of Karelia (Nauka, Moscow–Leningrad, 1964) [in Russian].

  12. P. Cloud, “Paleoecological significance of banded iron-formation,” Econ. Geol. 68, 1135–1143 (1973).

    Article  CAS  Google Scholar 

  13. K. C. Condie, “Precambrian superplume events,” In The Precambrian Earth: Tempos and Events. Developments in Precambrian Geology, Ed. by P. G. Eriksson, W. Altermann, D. R. Nelson, W. U. Mueller, and O. Catuneanu (Elsevier, Amsterdam, 2004), Vol. 12, 163–173 (2004).

    Google Scholar 

  14. G. M. Cox, G. P. Halverson, W. G. Minarik, D. P. Le’ Macdonald, F.A. Heron, E. J. Bellefroid, and J. V. Strauss, “Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance,” Chem. Geol. 362, 232–249 (2013).

    Article  CAS  Google Scholar 

  15. H. Duan, C. Wang, K. Shi, C. Wang, Q. Chen, J. Zhu, and J. Qian, “Insights into characterization and genesis of the Tieshanmiao banded iron formation deposit, China: Evidence from zircon U–Pb dating and geochemistry,” Ore Geol. Rev. 138, 104329 (2021).

    Article  Google Scholar 

  16. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  17. V. Ya. Gor’kovets and M. B. Raevskaya, “First find of Archean crust of chemical weathering in Karelia,” Dokl. Akad. Nauk SSSR 272 (6), 1425–1428 (1983).

    Google Scholar 

  18. V. Ya. Gor’kovets and N. V. Sharov, Kostomuksha Ore District: Geology, Deep Structure, and Metallogeny (KarNTs RAN, Petrozavodsk, 2015) [in Russian].

  19. V. Ya. Gor’kovets, M. B. Raevskaya, E. F. Belousov, and K. A. Inina, Geology and Metallogeny of the Kostomuksha Iron Deposit (Kareliya, Petrozavodsk, 1981) [in Russian].

    Google Scholar 

  20. V. Ya. Gor’kovets, M. B. Raevskaya, O. I. Volodichev, and L. S. Golovanova, Geology and Metamorphism of the Banded Iron Formation of Karelia (Nauka, Leningrad, 1991) [in Russian].

    Google Scholar 

  21. G. A. Gross, “A classification of iron-formation based on depositional environments,” Can. Mineral. 18, 215–222 (1980).

    Google Scholar 

  22. R. Haugaard, R. Frei, H. Stendal, and K. Konhauser, “Petrology and geochemistry of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and depositional environment,” Precambrian Res. 229, 150–176 (2013).

    Article  CAS  Google Scholar 

  23. R. Haugaard, L. Ootes, R. A. Creaser, and K. Konhauser, “The nature of Mesoarchaean seawater and continental weathering in 2.85 Ga banded iron formation, Slave craton, NW Canada,” Geochim. Cosmochim. Acta. 194, 34–56 (2016).

    Article  CAS  Google Scholar 

  24. H. D. Holland, “The oceans: A possible source of iron in iron-formations,” Econ. Geol. 68, 1169–1172 (1973).

    Article  CAS  Google Scholar 

  25. H. D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984).

    Book  Google Scholar 

  26. P. Höltta, E. Heilimo, H. Kontinen A. Huhma, S. Mertanen, P. Mikkola, J. Paavola, P. Peltonen, J. Semprich, A. Slabunov, and P. Sorjonen-Ward, “The Archaean Karelia and Belomorian provinces, Fennoscandian Shield,” In Evolution of Archean Crust and Early Life, Ser. Modern Approaches in Solid Earth Sciences, Ed. by Y. Dilek and H. Furnes (Springer, 2014), Vol. 7, 55–102 (2014).

    Google Scholar 

  27. D. L. Huston and G. A. Logan, “Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere,” Earth Planet. Sci. Lett. 220, 41–55 (2004).

    Article  CAS  Google Scholar 

  28. A. V. Ilyin, “Neoproterozoic Banded Iron Formations,” Lithol. Miner. Resour. 44 (1), 78–86 (2009).

    Article  CAS  Google Scholar 

  29. B. S. Kamber and G. E. Webb, “The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history,” Geochim. Cosmochim. Acta 65, 2509–2525 (2001).

    Article  CAS  Google Scholar 

  30. A. Kappler, C. Pasquero, K. O. Konhauser, and D. K. Newman, “Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria,” Geology 33, 865–868 (2005).

    Article  CAS  Google Scholar 

  31. K. O. Konhauser, T. Hamade, R. Raiswell, R. C. Morris, F. G. Ferris, G. Southam, and D. E. Canfield, “Could bacteria have formed the Precambrian banded iron formations?,” Geology 30, 1079–1082 (2002).

    Article  CAS  Google Scholar 

  32. K. O. Konhauser, L. Amskold, S. V. Lalonde, N. R. Posth, A. Kappler, and A. Anbar, “Decoupling photochemical Fe (II) oxidation from shallow-water BIF deposition,” Earth Planet. Sci. Lett. 258, 87–100 (2007).

    Article  CAS  Google Scholar 

  33. K. O. Konhauser, N. J. Planavsky, D. S. Hardisty, L. J. Robbins, T. J. Warchola, R. Haugaard, S. V. Lalonde, C. A. Partin, P. B. H. Oonk, H. Tsikos, T. W. Lyons, A. Bekker, and C. M. Johnson, “Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history,” Earth Sci. Rev. 172, 140–177 (2017).

    Article  CAS  Google Scholar 

  34. V. N. Kozhevnikov, Conditions of Formation of Structural-Metamophic Parageneses in Precambrian Complexes (Nauka, Leningrad, 1982) [in Russian].

    Google Scholar 

  35. V. N. Kozhevnikov, Archean Greenstone belts of the Karelian Craton as Accretionary Orogens (KarNTs RAN, Petrozavodsk, 2000) [in Russian].

  36. V. N. Kozhevnikov, N. G. Berezhnaya, S. L. Presnyakov, E. N. Lepekhina, A. V. Antonov, and S. A. Sergeev, “Geochronology (SHRIMP II) of zircons from Archean stratotectonic associations of Karelian greenstone belts: Significance for stratigraphic and geodynamic reconstruction,” Stratigraphy. Geol. Correlation 14 (3), 240–259 (2006).

    Article  Google Scholar 

  37. B. Krapez, M. E. Barley, and A. L. Pickard, “Hydrothermal and resedimented origins of the precursor sediments to banded iron formations: Sedimentological evidence from the early Palaeoproterozoic Brockman Supersequence of Western Australia,” Sedimentology 50, 979–1011 (2003).

    Article  Google Scholar 

  38. L. V. Kuleshevich and V. N. Furman, “The Taloveis gold deposit in the Precambrian Kostomuksha greenstone belt, Karelia,” Geol. Ore Deposits 51 (1), 51–67 (2009).

    Article  Google Scholar 

  39. V. S. Kulikov, S. A. Svetov, A. I. Slabunov, V. V. Kulikova, A. K. Polin, A. I. Golubev, V. Ya. Gorkovets, V. I. Ivashchenko, and M. A. Gogolev, “Geological Map of the Southeastern Fennoscandia (scale 1 : 750 000): a new approach to map compilation,” Trans. Karel. Res. Centre Russ. Akad. Sci., Prcambrian Geol. Ser., No. 2, 3–41 (2017).

  40. L. R. Kump and W. E. Seyfried, Jr., “Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers,” Earth Planet. Sci. Lett. 235, 654–662 (2005).

    Article  CAS  Google Scholar 

  41. Yu. I. Lazarev, Structural and Metamorphic Petrology of Banded Iron Formation of the Kostomuksha Deposit of the Karelian ASSR (Nauka, Leningrad, 1971) [in Russian].

    Google Scholar 

  42. L. K. Levskii, S. G. Skublov, and I. M. Gembitskaya, “Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: Age of regional metamorphism in the Kostomuksha structure,” Petrology 17 (7), 669–683 (2009).

    Article  CAS  Google Scholar 

  43. S. B. Lobach-Zhuchenko, N. A. Arestova, R. I. Levchenkov, O.A. Milkevich, and C. A. Sergeev, “Stratigraphy of the Kostomuksha Belt in Karelia (Upper Archean) as inferred from geochronological, geochemical, and isotopic data,” Stratigraphy. Geol. Correlation 8 (4), 319–326 (2000a).

    Google Scholar 

  44. S. B. Lobach-Zhuchenko, V. P. Chekulaev, N. A. Arestova, L. K. Levskii, and A. B. Kovalenko, “Archean terranes in Karelia: geological and isotopic–geochemical evidence,” Geotectonics 34 (6), 452–466 (2000b).

    Google Scholar 

  45. P. V. Medvedev, “Precambrian iron formations: paleoecological and paleontological aspects,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geol. Ser., No. 5, 95–98 (2022).

  46. P. V. Medvedev, S. A. Svetov, and A. I. Svetova, “Relics of thermophylic chemolithotrophic microbiota in the Archean rocks from Central Karelia,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., No. 1, 135–147 (2014).

  47. R. I. Mil’kevich and T. A. Myskova, “Late Archean metaterrigenous rocks of the Western Karelia: lithology, geochemistry, and provenances,” Lithol. Miner. Resour. 33 (2), 155–171 (1998).

    Google Scholar 

  48. W. B. Nance and S. R. Taylor, “Rare earth element patterns and crustaj evolution—I. Australian post-Archean sedimentary rocks,” Geochim. Cosmochim. Acta 40, 1539–1551 (1976).

    Article  CAS  Google Scholar 

  49. L. P. Nikitina, L. K. Levskii, K. I. Belyatskii B.V. Lokhov, V. A. Zhuravlev, E. N. Lepekhina, and A. V. Antonov, “Proterozoic alkalineultramafic magmatism in the eastern part of the Baltic Shield,” Petrology 7 (3), 246–266 (1999).

    Google Scholar 

  50. J. O’Neil, R. W. Carlson, D. Papineau, E. Y. Levine, and D. Francis, “The Nuvvuagittuq greenstone belt: A glimpse of Earth’s earliest crust,” In Earth’s Oldest Rocks, Ed. by M. J. van Kranendonk, V. C. Bennett, and J. E. Hoffmann (Elsevier, 2019), pp. 349–374.

    Google Scholar 

  51. F. Pirajno, Hydrothermal Processes and Mineral Systems (Springer, Science Business Media B.V., 2009).

  52. N. J. Planavsky, D. Asael, A. Hofmann, C. T. Reinhard, S. V. Lalonde, A. Knudsen, X. Wang, Ossa F. Ossa, E. Pecoits, and A. J. B. Smith, “Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event,” Nat. Geosci. 7, 283–286 (2014).

    Article  CAS  Google Scholar 

  53. I. S. Puchtel, A. W. Hofmann, K. P. Jochum, K. Mezger, A. A. Shchipansky, and A. V. Samsonov, “Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield,” Earth Planet. Sci. Lett. 155, 57–74 (1998).

    Article  CAS  Google Scholar 

  54. A. D. Savko and L. T. Shevyrev, “Banded iron formations of continents: new hisotircal-metallogenic data on the distribution, age, and genesis. Paper 1. Sedimentary basins with BIF,” Vestn. Voronezhsk. Univ., Ser: Geol., No. 3, 5–17 (2017).

  55. K. A. Savko, N. S. Bazikov, and G. V. Artemenko, “Geochemical evolution of the banded iron formations of the Voronezh crystalline massif in the Early Precambrian: sources of matter and geochronological constraints,” Stratigraphy. Geol. Correlation 23 (5), 451–467 (2015).

    Article  Google Scholar 

  56. K. A. Savko, A. V. Samsonov, V. M. Kholin, and N. S. Bazikov, “The Sarmatia megablock as a fragment of the Vaalbara supercontinent: correlation of geological events at the Archean‒Paleoproterozoic transition,” Stratigraphy. Geol. Correlation 25 (2), 123–145 (2017).

    Article  Google Scholar 

  57. G. M. Shramko, N. M. Antipova, Z. T. Gromova, et al., Report on the Results of 1974–76 Prospecting-Appraisal Works within Western and Northern Parts of the Kostomuksha Ore Field. Geological Report (Petrozavodsk, 1977) [in Russian].

  58. A. I. Slabunov, “Archean banded iron formations of the Karelian and Bundelkhand cratons: geochemistry, geochronology, and geodynamic conditions of formation,” in Lithogenesis and Metallogeny of Precambrian and Phanerozoic Sedimentary Complexes of Eurasia. Proc. 10 th International Conference on Lithology, Voronezh, Russia, 2023 (Tsifrovaya poligrafiya Voronezh, 2023), pp. 418–422 [in Russian].

  59. A. I. Slabunov and V. K. Singh, “Meso–Neoarchaean crustal evolution of the Bundelkhand Craton, Indian Shield: new data from greenstone belts,” Int. Geol. Rev. 61 (11), 1409–1428 (2019).

    Article  Google Scholar 

  60. A. I. Slabunov, S. B. Lobach-Zhuchenko, E. V. Bibikova, V. V. Balaganskii, P. Soronen-Ward, O. I. Volodichev, A. A. Shchipansky, S. A. Svetov, V. P. Chekulaev, N. A. Arestova, and V. S. Stepanov, “The Archean of the Baltic Shield: Geology, geochronology, and geodynamic settings,” Geotectonics 40 (6), 409–433 (2006).

    Article  Google Scholar 

  61. A. I. Slabunov, P. Hölttä, N. V. Sharov, and N. S. Nesterova, “4-D model of formation of the Earth’s crust of the Fennoscandian shield in the Archean as synthesis of modern geological data,” in Geology of Karelia from Archean to Present Day. Proc. Reports All-Russian Conference Dedicated to the 50 th Anniversary of the Institute of Geology of the Karelian Science Centre, Russian Academy of Sciences (KarNTs RAN, Petrozavodsk, 2011), pp. 13–21 [in Russian].

  62. A. I. Slabunov, A. V. Egorov, and N. S. Nesterova, “Geochemical types of Archean banded iron formations and the geodynamic settings of the basins, Kostomuksha Greenstone Belt, Karelian Craton, Russia,” In Proceedings of 4-th Kazan Golovkinsky Stratigraphic Meeting, Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources (Kazan’, 2020), pp. 256–262.

  63. A. I. Slabunov, N. S. Nesterova, A. V. Egorov, L. V. Kuleshevich, and V. I. Kevlich, “Age of the Archean strata with banded iron formation in the Kostomuksha Greenstone Belt, Karelian Craton, Fennoscandian Shield: Constraints on the geochemistry and geochronology of zircons,” Geochem. Int. 59 (4), 341–356 (2021).

    Article  CAS  Google Scholar 

  64. A. I. Slabunov, S. A. Svetov, A. V. Stepanova, P. V. Medvedev, and A. K. Polin, “New tectonic map of Karelia: the main concept and its application,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., 2 (5), 132–138 (2022a).

    Google Scholar 

  65. A. I. Slabunov, A. V. Kervinen, N. S. Nesterova, A. V. Egorov, O. A. Maksimov, and P. V. Medvedev, “Polychronous evolution of Neoarchean banded iron formation in the main ore sequence of the Kostomuksha greenstone belt: the age of zircons and accessory minerals,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., 2 (5), 139–143 (2022b).

    Google Scholar 

  66. A. I. Slabunov, A. V. Kervinen, N. S. Nesterova, A. V. Egorov, O. A. Maksimov, and P. V. Medvedev, “Main stages of the Kostomuksha greenstone belt banded iron formation genesis, Karelian craton: based on U-Th-Pb dating of zircon,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., No. 2, 5–22 (2023).

  67. A. Slabunov, K.B. Joshi, S.K. Singh, and V. K. Rai, “Depositional age and formation conditions of Archean Banded Iron Formations, Bundelkhand Craton, Central India: Gechemistry, Neodymium istopes and U‑Pb Zircon Geochronology,” Precambrian Res. 401, 107254 (2024a). https://doi.org/10.1016/j.precamres.2023.107254

  68. A. I. Slabunov, A. V. Kervinen, N. S. Nesterova, O. A. Maksimov, and P. V. Medvedev, “Zircon from banded iron formation as a sensitive indicator of its polychronous background: a case study on the Kostomuksha Greenstone Belt, Karelian Craton, Fennoscandian Shield,” Int. Geol. Rev. 66 (6), 1321–1333 (2024b).https://doi.org/10.1080/00206814.2023.2248501

  69. J. F. Slack, T. Grenne, A. Bekker, O. J. Rouxel, and P. A. Lindberg, “Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor–hydrothermal sulfide deposits, central Arizona, USA,” Earth Planet. Sci. Lett. 255, 243−256 (2007).

    Article  CAS  Google Scholar 

  70. A. J. B. Smith and N. J. Beukes, “The paleoenvironmental implications of pre–Great Oxidation Event manganese deposition in the Mesoarchean Ijzermijn Iron Formation Bed, Mozaan Group, Pongola Supergroup, South Africa,” Precambrian Res. 384, 106922 (2023).

    Article  CAS  Google Scholar 

  71. A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, I. S. Puchtel, Y. O. Larionova, A. N. Larionov, V. S. Stepanov, Y. B. Shapovalov, and S. V. Egorova, “Palaeoproterozoic continental MORB-type tholeiites in the Karelian Craton: Petrology, geochronology, and tectonic setting,” J. Petrol. 55 (9), 1719–1751 (2014).

    Article  CAS  Google Scholar 

  72. A. V. Stepanova, E. B. Salnikova, A. V. Samsonov, Yu. O. Larionova, S. V. Egorova, and V. M. Savatenkov, “The 2405 Ma doleritic dykes in the Karelian Craton: A fragment of a Paleoproterozoic large igneous province,” Dokl. Earth Sci. 472 (1), 72–77 (2017).

    Article  CAS  Google Scholar 

  73. R. J. Stern, S. K. Mukherjee, N. R. Miller, K. Ali, and P. R. Johnson, “∼750 Ma banded iron formation from the Arabian–Nubian Shield-implications for understanding Neoproterozoic tectonics, volcanism, and climate change,” Precambrian Res. 239, 79–94 (2013).

    Article  CAS  Google Scholar 

  74. S. A. Svetov, A. V. Stepanova, S. Yu. Chazhengina, E. N. Svetova, A. I. Mikhailova, Z. P. Rybnikova, A. S. Paramonov, V. L. Utitsina, V. S. Kolodei, and M. V. Ekhova, “Precision geochemical (ICP-MS, LA-ICP-MS) analysis of rock and mineral composition: the method and accuracy estimation in the case study of Early Precambrian mafic complexes,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., No. 7, 54–73 (2015).

  75. S. A. Svetov, A. V. Stepanova, S. V. Burdyukh, A. S. Paramonov, V. L. Utitsyna, M. V. Ekhova, I. A. Teslyuk, S. Yu. Chazhengina, E. N. Svetova, and A. A. Konyshev, “Precision geochemical (ICP-MS) analysis of Precambrian rocks: the method and accuracy estimation,” Trans. Karel. Res. Centre Russ. Akad. Sci., Precambrian Geology Ser., No. 2, 73–86 (2023).

  76. T. A. Velivetskaya, A. V. Ignat’ev, S. V. Vysotskiy, and A. V. Aseeva, “Multiple sulfur isotope ratios (32S, 33S, 34S, 36S) in the Archean rocks of Karelia: evidence for microbial life in the anoxic atmosphere,” Russ. Geol. Geophys. (2023).https://doi.org/10.15372/GIG2023182

  77. O. I. Volodichev, “On felsic derivatives of komatiitic and tholeiitic basalts of the Kostomuksha structure, Fennoscandian shield,” Granite-Greenstone Systems of Archean and their Late Analogues. Proc. Conf. Excursion Guide (Petrozavodsk, 2009), pp. 37–41 [in Russian].

  78. A. B. Vrevsky, “Liquation differentiation of komatiites: isotope-geochemical composition of rocks, age, and petrological–geodynamic implications: evidence from the Kostomuksha greenstone structure, Fennoscanidan Shield,” Geology of Ore Deposits, 65 (8), 921–932 (2023).

  79. V. S. Vysotskiy, A. I. Khanchuk, L. V. Kuleshevich, A. V. Ignat’ev, A. I. Slabunov, and T. A. Velivetskaya, “The multi-isotope composition of sulfur in sulfides and microfossils of the Mesoarchean Leksa pyrite ore occurrence of the Karelian Craton: New data on abiogenic and biogenic effects on the formation of ancient ores,” Dokl. Earth Sci. 485 (5), 409–412 (2019).

    Article  Google Scholar 

  80. S. V. Vysotskiy, T. A. Velivetskaya, A. V. Ignatiev, L. V. Kuleshevich, and A. I. Slabunov, “Multiple sulfur isotope composition in Mesoarchean sulfide deposits of the Karelian Craton: implications for determining the sulfur source, biogeochemical processes, and deposit genesis,” Russ. Geol. Geophys. 63 (11), 1282–1299 (2022a).

    Article  Google Scholar 

  81. S. V. Vysotskiy, T. A. Velivetskaya, A. V. Ignatiev, A. I. Slabunov, and A. V. Aseeva, “Multiple sulfur isotope evidence for bacterial sulfate reduction and sulfate disproportionation operated in Mesoarchaean rocks of the Karelian Craton,” Minerals 12 (9), 1143 (2022b).

    Article  CAS  Google Scholar 

  82. C. Wang, L. Zhang, C. Lan, and Y. Dai, “Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting,” Precambrian Res. 255, 603–626 (2014).

    Article  CAS  Google Scholar 

  83. L. N. Warr, “IMA-CNMNC approved mineral symbols,” Mineral. Mag. 85, 291–320 (2021).

    Article  CAS  Google Scholar 

  84. H. Zhou, W. Zhou, Y. Wei, E. C. Fru, B. Huang, D. Fu, H. Li, and M. Tan, “Mesoarchean banded iron–formation from the northern Yangtze Craton, South China and its geological and paleoenvironmental implications,” Precambrian Res. 383, 106905 (2022).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the head and geologists of the Karelskiy Okatysh mine (Kostomuksha, Russia) for comprehensive help in geological studies at their quarries. We are grateful to the staff of the Analytical Center of the Institute of Geology of the Karelian Research Center of RAS (under the head of S.V. Burdyukh), Center of Collective Use of the KarRC RAS, for performance of analytical studies. We also thank Scientific Editor S.A. Silantyev and reviewer K.A. Savko for constructive criticism, which allowed us to improve significantly the manuscript.

Funding

This work was financially supported by the Russian Science Foundation (project no. 22-17-00026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Nesterova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slabunov, A.I., Nesterova, N.S. & Maksimov, O.A. Geochemistry and Formation Conditions of Mesoarchean Banded Iron Formations (BIF-1) from the Kostomuksha Greenstone Belt, Karelian Craton. Geochem. Int. 62, 245–266 (2024). https://doi.org/10.1134/S0016702924030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030054

Keywords:

Navigation