Skip to main content
Log in

Destinezite: A Physicochemical and Calorimetric Study

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Destinezite (\({\text{Fe}}_{{1.97}}^{{3 + }}\)Al0.02)(PO4)0.99(SO4)0.90(OH)1.20⋅5.97H2O (Czech Republic) has been studied by thermal and electron-microprobe analyses, X-ray powder diffraction, and by IR, Raman, and Mössbauer spectroscopy. The enthalpy of formation of destinezite \({\text{Fe}}_{2}^{{3 + }}\)(PO4)(SO4)(OH)⋅6H2O from elements ∆fH0(298.15 K) = –4258 ± 12 kJ/mol was determined by the method of solution calorimetry in lead borate 2PbO⋅B2O3 melt on a Setaram (France) Calvet microcalorimeter. The value of its absolute entropy S0(298.15 K) = 462.0 J/(mol K) was estimated, the entropy of formation ∆fS0(298.15 K) = –2054 J/(mol K), and the Gibbs energy of formation from the elements ∆fG0(298.15 K) = –3646 kJ/mol were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. N. V. Chukanov, Infrared Spectra of Mineral Species: Extended Library (Springer Verlag GmbH, Dordrecht–Heidelberg–New York–London, 2014).

    Book  Google Scholar 

  2. V. C. Farmer, “The infrared spectra of minerals,” Mineral. Soc. 41, (1974).

  3. Frost R. and S. Palmer, “Raman spectroscopic study of the minerals diadochite and destinezite \({\text{Fe}}_{2}^{{3 + }}\)(PO4,SO4)2(OH)⋅6H2O: Implications for soil science,” J. Raman Spectroscop. 42 (7), 1589–1595 (2011a).

    Article  CAS  Google Scholar 

  4. R. Frost and S. Palmer, “Thermal stability of the soil mi-nerals destinezite and diadochite \({\text{Fe}}_{2}^{{3 + }}\)(PO4)(SO4)(OH)⋅6H2O—Implications for soils in bush fires,” Thermochim. Acta 521, 121–124 (2011b).

    Article  CAS  Google Scholar 

  5. L. D. German, “Destinezite in the oxidation zone of the Blyava sulfide deposit, South Urals,” O Zap. Vsesoyuz. Mineral. O-va 85, 574–577 (1956).

    CAS  Google Scholar 

  6. A. L. Ievlev and L. L Shiryaeva, Pai–Khoy destinezite, Tr. Inst. Geol. Komi NTs UrO AN SSSR 58, 88–92 (1987).

    Google Scholar 

  7. Yu. D. Gritsenko, L. P. Ogorodova, M. F. Vigasina, D. A. Kosova, S. K. Dedushenko, L. V. Melchakova, and D. A. Ksenofontov, “Thermodynamic properties of coquimbite and aluminocoquimbite,” Geochem. Int. 61 (6), 643–649 (2023a).

    Article  CAS  Google Scholar 

  8. Yu. D. Gritsenko, E. N. Eremina, M. F. Vigasina, S. V. Vyatkin, L. P. Ogorodova, V. V. Maltsev, and L. V. Melchakova, “Sodalite: spectroscopic and thermochemical investigations,” Geochem. Int. 61 (7), 735–743 (2023b).

    Article  CAS  Google Scholar 

  9. IMA List of Minerals. http://cnmnc.main.jp/IMA_Master_List _(2021–11).pdf (2021-11).

  10. V. P. Ivanova, B. K. Kasatov, T. N. Krasavina, and E. L. Rozinova, Thermal Analysis of Minerals and Rocks (Nedra, Leningrad, 1974) [in Russian].

    Google Scholar 

  11. I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  12. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical studies of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  13. E. Koszowska, A. Wesełucha-Birczyńska, B. Borzęcka-Prokop, and E. Porębska, “Micro and FT–Raman characterization of destinezite,” J. Mol. Struct. 744–747, 845–854 (2004).

    Google Scholar 

  14. A. R. Kotel’nikov, Yu. K. Kabalov, T. N. Zezyulya, L. V. Mel’chakova, and L. P. Ogorodova, “Experimental study of celestine–barite solid solution,” Geochem. Int. 38 (12), 1181–1187 (2000).

    Google Scholar 

  15. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  CAS  Google Scholar 

  16. L. P. Ogorodova, I. A. Kiseleva, L. V. Mel’chakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” Russ. J. Phys. Chem. 85 (9), 1492–1494 (2011).

    Article  CAS  Google Scholar 

  17. D. R. Peacor, R. C. Rouse, T. D. Coskren, and E. J. Essene, “Destinezite (“diadochite”), its crystal structure and role as a soil1 mineral at Alum Cave Bluff, Tennessee,” Clays Clay Minerals 47, 1–11 (1999).

    Article  CAS  Google Scholar 

  18. Wenshi Peng and Liu Gaokui, Infrared Spectra of Minerals (Science, Beijing, 1982).

    Google Scholar 

  19. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

  20. L. L. Shiryaeva and G. N. Modyanova, “Anlysis of thermal destruction of minerals with double complex anions by the example of destinezite,” Tr. Inst. Geol. Komi NTs UrO Ross. AN 106, 125–138 (2000).

  21. N. V. Shukanov, Infrared Spectra of Mineral Species: Extended Library (Springer Verlag, Dordrecht–Heidelberg–New York–London, 2014).

    Book  Google Scholar 

  22. I. V. Shvetsova and Ya. E. Yudovich, “Find of destinezite at the Polar Urals,” Tr. Inst. Geol. Komi NTs UrO RAN 90, 90–93 (1996).

    Google Scholar 

  23. J. Trąbska, A. Wesełucha-Birczyńska, B. Trybalska, M. Przybyła, and M. Byrska-Fudali, “Raman microspectroscopy and SEM/EDS in the investigation of white and red painting from Celtic pottery from a Modlniczka site in Poland,” Vib. Spectrosc. 86, 233–243 (2016).

    Article  Google Scholar 

  24. S. V. Ushakov, K. V. Helean, A. Navronsky, and L. A. Boatner, “Thermochemistry of rare–earth orthophosphates,” J. Mater. Res. 16 (9), 2623–2633 (2001).

    Article  CAS  Google Scholar 

  25. F. Velasco, N. de la Pinta, F. Tornos, T. Briezewski, and A. Larrañaga, “The relationship of destinezite to the acid sulfate alteration at the EI Laco magnetite deposit104 Chile,” Am. Mineral. 105, 860–872 (2020).

    Article  Google Scholar 

  26. Ya. E. Yudovich, M. P. Ketris, and N. V. Rybina, Phosphorus Geochemistry (Geoprint, Syktyvkar, 2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the scientific editor of the journal the corresponding member of the Russian Academy of Sciences O.L. Kuskov and the reviewers for assistance with the preparation of the manuscript.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Gritsenko or L. P. Ogorodova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, Y.D., Ogorodova, L.P., Vigasina, M.F. et al. Destinezite: A Physicochemical and Calorimetric Study. Geochem. Int. 62, 274–283 (2024). https://doi.org/10.1134/S0016702924030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030042

Keywords:

Navigation