Skip to main content
Log in

Partition of Trace Elements between Minerals and Melt: Parameterization of Experimental Data on Olivine, Pyroxene, and Feldspars

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The partition of trace elements between minerals (olivine, orthopyroxene, clinopyroxene, and feldspars) and silicate melts is analyzed based on experimental data within broad PT ranges (from 1 atm to 10 GPa and ∼1000–2000°C) and the compositions of melts (from ultramafic to ultrasilicic) and minerals. The dependences of the logarithmic partition coefficients (lnDi) on PT parameters and compositions are approximated by linear functions of 1/T, P/T (where P is pressure and T is temperature in K) and compositional parameters of the minerals and melts. The Di/Dj ratios of a large number of pairs of elements are found out to be independent of experimental parameters and vary within narrow ranges. The parameters of the dependences of Di on PT and compositions are estimated by minimizing the squared deviations of model Di and Di/Dj values from experimental ones. The dependences thus derived make it possible to calculate Di for numerous elements accurate to a factor of 1.2–2.0. As an illustrative example, a model is discussed for the derivation of mafic basaltic melts in mid-oceanic ridges at the melting of a peridotite source and crystallization of primary magmas under crustal parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. N. L. Allan, Z. Du, M. Y. Lavrentiev, J. D. Blundy, J. A. Purton, and W. van Westrenen, “Atomistic simulation of mineral–melt trace–element partitioning,” Phys. Earth Planet. Int. 139, 93–111 (2003).

    Article  CAS  Google Scholar 

  2. J. H. Bedard, “Partitioning coefficients between olivine and silicate melts,” Lithos 83, 394–419 (2005).

    Article  CAS  Google Scholar 

  3. J. H. Bedard, “Trace element partitioning in plagioclase feldspar,” Geochim. Cosmochim. Acta 70, 3717–3742 (2006).

    Article  CAS  Google Scholar 

  4. J. H. Bedard, “Trace element partitioning coefficients between terrestrial silicate melts and plagioclase feldspar: Improved and simplified parameters,” Geochim. Cosmochim. Acta 350, 69–86 (2023).

    Article  CAS  Google Scholar 

  5. P. R. Bevington, D. K. Robinson, et al., Data Reduction and Error Analysis for the Physical Sciences, 3rd Ed. (Boston, McGraw–Hill, 2003).

    Google Scholar 

  6. J. Blundy and B. Wood, “Prediction of crystal–melt partition coefficients from elastic moduli,” Nature 372, 452–454 (1994).

    Article  CAS  Google Scholar 

  7. G. P. Brey, T. Koehler, and K. G. Nickel, “Geothermobarometry in four–phase lherzolites I. Experimental results from 10 to 60 kbar,” J. Petrol. 31, 1313–1352 (1990).

    Article  CAS  Google Scholar 

  8. R. O. Colson, G. A. Mckay, and L. A. Taylor, “Temperature and composition dependencies of trace element partitioning: Olivine/melt and low–Ca pyroxene/melt,” Geochim. Cosmochim. Acta 52, 539–553 (1988).

    Article  CAS  Google Scholar 

  9. E. W. Cung, G. K. Ustunisik, A. S. Wolf, and R. L. Nielsen, The influence of database characteristics on the internal consistency of predictive models of trace element partitioning for clinopyroxene, garnet, and amphibole,” Geochem., Geophys., Geosyst. 24, e2023GC010876 (2023). https://doi.org/10 1029/2023GC010876

  10. M. J. Drake, “The oxidation state of europium as an indicator of oxygen fugacity,” Geochim. Cosmochim. Acta 39, 55–64 (1975).

    Article  CAS  Google Scholar 

  11. A. Gale, C. A. Dalton, C. H. Langmuir, Y. Su, and J.-G. Schilling, “The mean composition of ocean ridge basalts,” Geochem., Geophys., Geosyst. 14, 489–518 (2013).

    Article  CAS  Google Scholar 

  12. A. V. Girnis, “Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas,” Petrology 11 (2), 101–113 (2003).

    Google Scholar 

  13. A. V. Girnis, “Trace element partitioning between olivine and melt: Analysis of experimental data,” Geochem. Int. 61 (4), 311–323 (2023).

    Article  CAS  Google Scholar 

  14. T. H. Green, “Experimental studies of trace-element partitioning applicable to igneous petrogenesis–Sedona 16 years later,” Chem. Geol. 117, 1–36 (1994).

    Article  CAS  Google Scholar 

  15. V. C. Honour, M. B. Holness, J. L. Partridge, and B. Charlier, “Microstructural evolution of silicate immiscible liquids in ferrobasalts,” Contrib. Mineral. Petrol. 174, 77 (2019).

    Article  Google Scholar 

  16. A. J. Irving, “A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta 42, 743–770 (1978).

    Article  CAS  Google Scholar 

  17. J. H. Jones, “Thoughts and reminiscences on experimental trace element partitioning,” Geochem. Perspect. 5 (2), 1–251 (2016).

    Google Scholar 

  18. R. Kessel, M. W. Schmidt, P. Ulmer, and T. Pettke, “Trace element signature of subduction–zone fluids, melts and supercritical liquids at 120–180 km depth,” Nature 437, 724–727 (2005).

    Article  CAS  Google Scholar 

  19. M. J. Le Bas, R. N. Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali–silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  CAS  Google Scholar 

  20. P. J. Michael and D. W. Graham, “The behavior and concentration of CO2 in the suboceanic mantle: Inferences from undegassed ocean ridge and ocean island basalts,” Lithos 236–237, 338–351 (2015). https://doi.org/10.1016/j.lithos.2015.08.020

    Article  CAS  Google Scholar 

  21. S. A. Miller, P. D. Asimow, and D. S. Burnett, “Determination of melt influence on divalent element partitioning between anorthite and CMAS melts,” Geochim. Cosmochim. Acta 70, 4258–4274 (2006).

    Article  CAS  Google Scholar 

  22. H. Nagasawa, “Trace element partition coefficient in ionic crystals,” Science 152, 767–769 (1966).

    Article  CAS  Google Scholar 

  23. V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. A. Kovalenker, “Volatile, trace, and ore elements in magmatic melts and natural fluids: evidence from mineral–hosted inclusions. I. Mean concentrations of 45 elements in the main geodynamic settings of the Earth,” Geochem. Int. 60 (4), pp. 325–344 (2022).

    Article  CAS  Google Scholar 

  24. A. Navrotsky, “Thermodynamics of element partitioning: (1) Systematics of transition metals in crystalline and molten silicates and (2) defect chemistry and “the Henry’s law problem”,” Geochim. Cosmochim. Acta 42, 887–902 (1978).

    Article  CAS  Google Scholar 

  25. R. L. Nielsen, “A model for the simulation of combined major and trace element liquid lines of decent,” Geochim. Cosmochim. Acta 52, 27–38 (1988).

    Article  CAS  Google Scholar 

  26. R. L. Nielsen and G. K. Ustunisik, “Amphibole/melt partition coefficient experiments v. 2, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) (2022a). https://doi.org/10.26022/IEDA/112324

  27. R. L. Nielsen and G. K. Ustunisik, “Clinopyroxene/melt partition coefficient experiments v. 2, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) (2022b). https://doi.org/10.26022/IEDA/112325

  28. R. L. Nielsen and G. K. Ustunisik, “Garnet/melt partition coefficient experiments v. 2, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) (2022c). https://doi.org/10.26022/IEDA/112323

  29. N. Onuma, H. Higuchi, H. Wakita, and H. Nagasawa, “Trace element partition between two pyroxenes and the host lava,” Earth Planet. Sci. Lett. 5, 47–51 (1968).

    Article  CAS  Google Scholar 

  30. H. Palme and H. St.C. O’Neill, “Cosmochemical estimates of mantle composition, Treatise on Geochemistry, 2nd Ed. (Elsevier, 2014), pp. 3.

    Google Scholar 

  31. J. A. Philpotts, “The law of constant rejection,” Geochim. Cosmochim. Acta 42, 909–920 (1978).

    Article  CAS  Google Scholar 

  32. D. C. Presnall and J. D. Hoover, “High pressure phase equilibrium constraints on the origin of mid–ocean ridge basalts,” Ed. by B. O. Mysen, Magmatic Processes: Physicochemical Principles, Geochem. Soc., Spec. Publ. 1, 75–89 (1987).

  33. G. Rustioni, A. Audetat, and H. Keppler, “Experimental evidence for fluid–induced melting in subduction zones,” Geochem. Persp. Lett. 11, 49–54 (2019).

    Article  Google Scholar 

  34. V. J. M. Salters and A. Stracke, “Composition of the depleted mantle,” Geochem., Geophys., Geosyst. 5 (5), 1–27 (2004).

    Article  Google Scholar 

  35. M. V. Schmidt, J. A.D. Connolly, D. Gunther, and M. Bogaerts, “Element partitioning: The role of melt structure and composition, Science 312, 1646–1650 (2006).

    Article  CAS  Google Scholar 

  36. L. Schoneveld and H. St. C. O’Neill, “The influence of melt composition on the partitioning of trace elements between anorthite and silicate melt,” Contrib. Mineral. Petrol. 173, 13 (2019). https://doi.org/10.1007/s00410-019-1548-8

    Article  CAS  Google Scholar 

  37. A. Stracke, F. Genske, J. Berndt, and J. M. Koornneef, “Ubiquitous ultra–depleted domains in Earth’s mantle,” Nat. Geosci. 12, 851–855 (2019).

    Article  CAS  Google Scholar 

  38. I. V. Veksler, A. M. Dorfman, L. V. Danyushevsky, J. K. Jakobsen, and D. B. Dingwell, “Immiscible silicate liquid partition coefficients: implications for crystal–melt element partitioning and basalt petrogenesis,” Contrib. Mineral. Petrol. 152, 685–702 (2006).

    Article  CAS  Google Scholar 

  39. J. M. Warren, N. Shimizu, C. Sakaguchi, H. J.B. Dick, and E. Nakamura, “An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions,” J. Geophys. Res. 114, B12203 (2009).

    Google Scholar 

  40. E. B. Watson, “Two–liquid partition coefficients: experimental data and geochemical implications,” Contrib. Mineral. Petrol. 56, 119–134 (1976).

    Article  CAS  Google Scholar 

  41. B. J. Wood and J. D. Blundy, “Trace element partitioning: The influences of ionic radius, cation charge, pressure, and temperature,” Treatise on Geochemistry, 2nd. Ed. (Elsevier, 2014), Vol. 3, pp. 421–448.

    Google Scholar 

  42. L. Yang and van Hinsberg V. J., “Liquid immiscibility in the CaF2–granite system and trace element partitioning between the immiscible liquids,” Chem. Geol. 511, 28–41 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks T.A. Shishkina, G.S. Nikolaev (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences), and R. Almeev (Institute of Mineralogy, Leibnitz University, Hannover, Germany) for careful analysis of the manuscript and valuable comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Girnis.

Ethics declarations

As the author of this work, I declare that I have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girnis, A.V. Partition of Trace Elements between Minerals and Melt: Parameterization of Experimental Data on Olivine, Pyroxene, and Feldspars. Geochem. Int. 62, 221–233 (2024). https://doi.org/10.1134/S0016702924030030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030030

Keywords:

Navigation