Skip to main content
Log in

Lithological, Mineralogical, and Geochemical Features of the Lower Maeotian Sediments of the Kazantip Nature Reserve, Crimea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of carbonate and sulfate–carbonate–clayey rocks of the Lower Maeotian in the sections of the bays of Cape Kazantip using a complex of analytical methods. It is established that the greatest variation of chemical, bituminological, phase, and carbon-isotope composition is characterized by carbonate–clay and clayey rocks of the section bottom. It is proved that the initial OM was accumulated mainly under reducing conditions, but has some variations in composition; it is characterized by a low degree of its catagenetic transformation, which indicates the preservation of the primary isotopic composition. The diverse phase composition of the clay fraction is revealed: dioctahedral illite, kaolinite, chlorite, glauconite, and weakly ordered mixed-layer formations of illite/smectite type with different ratios of illite and smectite components and varying degrees of ordering. Modeling of their diffraction profiles showed that the illite/smectite structure may indicate significant depths of sediment mobilization by mud volcanoes. The isotopic composition of the 13Сorg ranges widely from –33.72 to –19.27‰ the mode being –22.1…–24.93‰. The isotopic composition of 13Сorg below –25.6‰ may be related to the entry of isotope-light mass of methane-oxidizing bacteria into the OM. It was revealed that variations of isotopic composition curves 13Сcarb and 13Сorg along the section of the studied rocks are rarely characterized by unidirectional (positive or negative) variations and have different trends along the section. Direction of the 13Сcarb isotope composition curve with some variations has a pronounced upward trend toward heavier weighting, whereas the isotopic values of the 13Сorg reveals reverse tendency. The results obtained prove that the revealed variations in the composition of OM and carbon isotope composition in the Lower Maeotian sections of Cape Kazantip reflect variations in the sedimentation conditions of temperature, salinity, freshwater ingression, bioproductivity fluctuations, and the influence of local gas–fluid deposition. It is proposed to use such accessory minerals as zircon, monazite, and ilmenite as an indicator of mud paleovolcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. P. A. Allison, “Phosphatized soft-bodied squids from the Jurassic Oxford clay,” Lethaia 21, 403–410 (1988).

    Article  Google Scholar 

  2. N. I. Andrusov, “Fossil bryozoan reefs of the Kerch and Taman’ peninsula,” Zap. Kievsk. O-va Estestvoispyt., No. 1, 1–48 (1909).

  3. A. I. Antoshkina, L. V. Leonova, V. P. Lyutoev, and Yu. S. Simakova, “Traces of bacterial activity in the Neogene rift and terrigenous rocks of the Kazantip Cape (Crimea),” Proc. Conf. Geology and Biodiversity of Tethys and Eastern Paratethys (Goryachii Klyuch, 2017), pp. 53–57 (2017) [in Russian].

  4. A. I. Antoshkina, L. V. Leonova, and Yu. S. Simakova, “The development of miocene biohermal bryozoan limestones of Kazantip Cape (Crimea): a new insight,” Dokl. Earth Sci. 491 (2), 195–198 (2020).

    Article  CAS  Google Scholar 

  5. A. I. Antoshkina, L. V. Leonova, and Yu. S. Simakova, “Lower Maeotian bryozoan bioherms of Cape Kazantip, Crimea: A new concept of the paleoecological environment of their origin,” Lithol. Miner. Resour. 57 (6), 543–567 (2022).

    Article  CAS  Google Scholar 

  6. E. T. Degens, “Stable isotope distribution in carbonates,” Develop. Sedimentol. 9 (B), 193–208 (1967).

  7. A. N. Derkachev, N. A. Nikolaeva, B. V. Baranov, N. N. Barinov, A. V. Mozherovskiy, H. Minami, A. Hachikubo, and H. Shoji, “Manifestation of carbonate–barite mineralization around methane seeps in the Sea of Okhotsk (the western slope of the Kuril Basin),” Oceanology 55 (3), 390–399 (2015).

    Article  Google Scholar 

  8. A. N. Derkachev, N. A. Nikolaeva, I. B. Tsoi, B. V. Baranov, N. N. Barinov, A. V. Mozherovskii, A. A. Krylov, A. B. Kuznetsov, H. Minami, and A. Hachikubo, “A long-lived center of gas–fluid emanations on the western slope of the Kuril Basin (Sea of Okhotsk),” Lithol. Miner. Resour. 56 (4), 309–332 (2021).

    Article  CAS  Google Scholar 

  9. V. A. Dorogochinskaya, A. N. Stepanov, and V. S. Fadeev, “Geochemical factors affecting the formation of compositions of relict alkanes C17–C20 in the caustoboliths,” Neftekhimiya 33 (1), 7–16 (1993).

    Google Scholar 

  10. V. V. Ershov and Yu. A. Perstneva, “Lithochemical characteristics of hill breccia of mud volcanos worldwide,” Otechestvennaya Geol., No. 4, 72–83.

  11. E. M. Galimov, “Isotope method of revealing oil source deposits by the example of deposits of some USSR regions,” Izv. Akad. Nauk SSSR. Ser. Geol., No. 4, 3–21 (1986).

  12. E. M. Galimov, “Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks,” Chem. Geol. 71 (1–3), 77–95 (1988).

    Article  CAS  Google Scholar 

  13. A. Giesemann, H. J. Jager, A. L. Norman, H. P. Krouse, and W. A. Brand, “On-line sulfur-isotope determination using an elemental analyzer coupled to a mass-spectrometer.” Anal. Chem. 66, 2816–2819 (1994).

    Article  CAS  Google Scholar 

  14. I. A. Goncharova and Yu. V. Rostovtseva, “Development of carbonate organogenic mounds in the Middle–Late Miocene of the Eucsinian Caspian Basin (eastern Paratethys),” Riftogenic Formations and Reefs in the Biosphere Evolution. Series Geological Systems in the Past, (PIN RAN, Moscow, 2011), pp. 155–178 [in Russian].

    Google Scholar 

  15. N. V. Grassineau, D. Mattey, and D. Lowry, “Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotoperatio mass spectrometry,” Anal. Chem. 73, 220–225 (2001).

    Article  CAS  Google Scholar 

  16. J. M. Hunt, Petroleum Geochemistry and Geology (W.H. Freeman and Company, San Francisco, 1979).

    Google Scholar 

  17. V. N. Kholodov, “Mud volcanoes, their distribution regularities and genesis: communication 1. Mud volcanic provinces and morphology of mud volcanoes,” Lithol. Miner. Resour. 37 (3), 197–209 (2002).

    Article  Google Scholar 

  18. V. N. Kholodov, Geochemistry of Sedimentary Process (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  19. V. N. Kholodov, “Elisional processes and salt tectonics: Communication 1. Catagenetic transformations in saliferous sequences,” Lithol. Miner. Resour. 48 (4), 267–284 (2013).

    Article  Google Scholar 

  20. V. H. Kirkinskaya and E. M. Smekhov, Carbonate Rocks—Oil and Gas Reservoirs, (Nedra, 1981) [in Russian].

    Google Scholar 

  21. A. A. Klyukin, “Factors determining biodiversity the Kazantip naural reserve,” Tr. Nikitsk. Botanich. Sada – Natsion. Nauchn. Ts. 126, 133–148 (2006).

    Google Scholar 

  22. K. Knittel and A. Boetius, “Anaerobic oxidation of methane: progress with an unknown process,” Annu. Rev. Microbiol. 63, 311–334 (2009).

    Article  CAS  Google Scholar 

  23. A. J. Kopf, “Significance of mud volcanism,” Rev. Geophys. 40 (2), 2–52. https://doi.org/10(2002).1029/2000RG000093

  24. A. A. Krylov and E. A. Logvina, “Mechanisms of the formation of authigenic carbonates under conditions of subaquatic diagenesis,” Proc. All-Russian Lithological Conference Dedicated to the 100 th Anniversary of L.B. Rukhina, Leningrad Lithological School, St. Petersburg, Russia, 2012 (SPbGU, St. Petersburg, 2012), pp. 59–60 [in Russian].

  25. A. A. Krylov, O. M. Khlystov, T. I. Zemskaya, H. Minami, A. Hachikubo, H. Shoji, M. Kida, T. P. Pogodaeva, L. Naudts, and J. Poort, “Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal,” Geochem. Int. 46 (10), 985–995 (2008).

    Article  Google Scholar 

  26. V. N. Kuleshov, “Evolution of isotopic carbon dioxide–water systems in lithogenesis: Communication 1. Sedimentogenesis and diagenesis,” Lithol. Miner. Resour. 36 (5), 429–444 (2001).

    Article  CAS  Google Scholar 

  27. V. G. Kulichenko, “Conditions of formation of bryozoan reefs in the Late Miocene basin of Crimea,” Ecology of Invertebrates of Tertiary Seas of Ukraine (Naukova dumka, Kiev, 1971), pp. 107–115 [in Russian].

    Google Scholar 

  28. A. Yu. Lein and M. V. Ivanov, Biogeochemical Cycles of Methane in Ocean (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  29. A. Yu. Lein, I. I. Rusanov, G. A. Pavlova, O. M. Dara, Z. I. Verkhovskaya, E. E. Zakharova, S. K. Yusupov, and M. V. Ivanov, “Energy sources for diagenesis: Evidence from the Black Sea,” Lithol. Miner. Resour. 46 (2), 154–169 (2011).

    Article  Google Scholar 

  30. L. V. Leonova, A. I. Antoshkina, and Yu. S. Simakova, “Specific minerals in the bryozoan biohermal and polychaete limestones (Kazantip reserves, Crimea), Proc. All-Russian Lithological Conference on Reef Geology (Geoprint, Syktyvkar, 2020), pp. 71–73 [in Russian].

  31. L. V. Leonova, A. I. Antoshkina, O. B. Azovskova, and Yu. S. Simakova, “On barite in sediment and fossil cavities (Kazantip reserve, Crimea),” Modern Problems of Genetic, Experimental, and Applied Mineralogy (Yushkin’s Readings, 2022): Proc. Russ. Conf. with Intern. Participation, Syktyvkar, Russia, 2022 (Geoprint, Syktyvkar, 2022), pp. 108–110 [in Russian].

  32. G. A. Lychagin, “Fossil mud volcanoes of the Kerch Peninsula,” Byull. MOIP, Otd. Geol. 27 (4), 3–13 (1952).

    Google Scholar 

  33. R. Matsumoto, B. J. Ryu, S. R. Lee, S. Lin, S. Wu, K. Sain, I. Pecher, and M. Riedel, “Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region,” Mar. Petr. Geol. 28, 1751–1767 (2011).

    Article  CAS  Google Scholar 

  34. M. V. Muratov, Manual on Geological Practice in Crimea. Volume 2. Geology of the Crimean Peninsula (Nedra, Moscow, 1973) [in Russian].

  35. E. B. Naimark, V. A. Eroshchev-Shak, N. P. Chizhikova, and E. I. Kompantseva, “Interaction of clay minerals with microorganisms: a review of experimental data,” Zh. Obshch. Biol. 70 (2), 155–167 (2009).

    CAS  Google Scholar 

  36. R. I. Nedumov, “Probems of litology, geochemistry, and paleogeography of Cenozoic deposits of Cis-Caucasus,” Litol. Miner. Resour., No. 6, 36–54 (1993).

  37. O. A. Nikitenko and V. V. Ershov, “Geochemical patterns of mud volcanic waters: reviewed worldwide data,” Geochem. Int. 59 (10), 922–937 (2021).

    Article  CAS  Google Scholar 

  38. A. N. Ovsyuchenko, S. V. Shvarev, A. S. Larkov, and A. V. Marakhanov, “Traces of strong earthquakes of the Kerch–Taman region based on geological data,” Vopr. Inzh. Seismol. 42 (3), 33–54 (2015).

    Google Scholar 

  39. C. Pierre, J. Demange, M.-M. Blanc-Valleron, and S. Dupré, “Authigenic carbonate mounds from active methane seeps on the southern Aquitaine Shelf (Bay of Biscay, France): evidence for anaerobic oxidation of biogenic methane and submarine groundwater discharge during formation,” Cont. Shelf Res. 133, 13–25 (2017).

    Article  Google Scholar 

  40. S. V. Popov, M. P. Antipov, A. S. Zastrozhnov, E. E. Kurina, and T. N. Pinchuk, “Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene–Neogene,” Stratigraphy. Geol. Correlation, 18 (2), 200–224 (2010).

    Article  Google Scholar 

  41. S. V. Popov, I. A. Goncharova, L. B Iljina, A. V. Koromyslova, L. A. Viskova, Yu. V. Rostovtseva, N. Yu. Fillippova, L. A. Golovina, E. P. Radionova, Y. V. Vernyhorova, N. I. Dykan, T. N. Pinchuk, T. M. Kozyrenko, and I. A. Nikolaeva, “Paleontology and stratigraphy of the Middle–Upper Miocene of the Taman Peninsula: Part 1. Description of key sections and benthic fossil groups,” Paleontol. J. 50 (10), 1039–1206 (2016). https://doi.org/10.1134/S0031030116100014

    Article  Google Scholar 

  42. D. A. Presnov, R. A. Zhostkov, D. V. Likhodeev, D. E. Beloborodov, Z. I. Dudarov, and S. M. Dolov, “New evidence for the deep structure of the Dzhau-Tepe mud volcano,” J. Volcanol. Seismol. 14 (3), 166–176 (2020).

    Article  Google Scholar 

  43. Yu. V. Rostovtseva and V. N. Kuleshov, “Carbon and oxygen stable isotopes in the Middle–Upper Miocene and Lower Pliocene carbonates of the eastern Paratethys (Kerch–Taman Region): Palaeoenvironments and post-sedimentation changes,” Lithol. Miner. Resour. 51 (5), 333–346 (2016).

    Article  CAS  Google Scholar 

  44. E. F. Shnyukov, V. M. Sheremetev, N. A. Maslakov, V. A. Kutnii, I. N. Gusakov, and V. V. Trofimov, Mud Volcanoes of the Kerch–Taman Region (GlavMedia, Krasnodar, 2006) [in Russian].

    Google Scholar 

  45. E. F. Shnyukov, Yu. V. Sobolevskii, G. I. Gnatenko, P. I. Naumenko, and V. A. Kutnii, Mud Volcanoes of the Kerch–Taman Region. Atlas (Naukova dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  46. V. N. Shvanov, V. T Frolov, E. I. Sergeeva, V. I. Dragunov, D. K. Patrunov, V. G. Kuznetsov, G. A. Belenitskaya, V. V. Kurilenko, A. D. Petrovskii, V. N. Konditerov, T. K. Bazhenova, V. V. Zhdanov, F. A. Shcherbakov, M. N. Shcherbakova, G. A. Mizens, V. M. Tseisler, B. A. Trifonov, Yu. L. Verba, and K. B. Il’in, Systematics and Classification of Sedimentary Rocks and their Analogues, Ed. by V. N. Shvanov (Nedra, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  47. D. A. Simonov and G. V. Bryantseva, “Morphostructural analysis in the neotectonic reconstructions of the Kerch Peninsula,” Byul. MOIP. Otd. Geol. 93 (3), 12–25 (2018).

    Google Scholar 

  48. E. Sokol, S. Kok, O. Kozmenko, S. Novikova, P. Khvorov, E. Nigmatulina, E. Belogub, and M. Kirillov, “Mineralogy and geochemistry of mud volcanic ejecta: a new look at old issues (a case study from the Bulganak Field, northern Black Sea),” Minerals 8 (8), 344 (2018). https://doi.org/10.3390/min8080344

    Article  CAS  Google Scholar 

  49. E. V. Sokol and S. N. Kokh, “In the glow of eternal lights. Firsthand,” Geologiya, No. 5 (35), 53–71 (2010).

    Google Scholar 

  50. A. M. F. Temescu, L. M. Pratt, G. W. Rothwell, P. K. Strother, and G. C. Nadon, “Carbon isotopes support the presence of extensive land flores pre-dating the origin of vascular plants,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 283, 46–59 (2009).

    Article  Google Scholar 

  51. G. T. Ushatinskaya, “Role of bacteria in the accumulation of Cambrian–Ordovician phosphate-bearing Obolus beds in the north-west of the Russian Plate,” Paleontol. J. 56 (2), 117–122 (2022).

    Article  Google Scholar 

  52. V. A. Uspenskii, O. A. Radchenko, L. S. Belyaeva, L. I. Bogorodskaya, T. E. Baranova, P. A. Trushkov, E. S. Larskaya, A. R. Belikova, and N. T. Kunaeva, Tasks and Methodical Approaches to the Bituminological Study (Nedra, Leningrad, 1986) [in Russian].

    Google Scholar 

  53. N. B. Vassoevich, Geochemistry of Organic Matter in Oil Origin: Selected Papers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  54. Yu. V. Vernigorova and T. S. Ryabokon, Maikopian Deposits (Oligocene–Lower Miocene) of the Kerch Peninsula: History of Study, Polemics, and Stratigraphy (NAN Ukrainy, IGN NAN Ukrainy, Kiev, 2018) [in Russian].

  55. Jiasheng Wang, E. Suess, and D. Rickert, “Authigenic gypsum found in gas hydrate-associated sediments from Hydrate Ridge, the eastern North Pacific,” Sci. China Earth Sci. 47 (3), 280–288 (2004).

    Article  Google Scholar 

  56. V. V. Zaikov and A. Yu. Lein, “Sulfur isotopy in minerals of the supergene zone of the Gai copper sulfide deposit (South Urals),” Ural’sk. Mineral. Sb., No. 8, 102–105 (1998).

  57. Mei Zang, Hongfeng Lu, Hongxiang Guan, Lihua Liu, Daidai1 Wu, and Nengyou Wu, “Methane seepage intensities traced by sulfur isotopes of pyrite and gypsum in sediment from the Shenhu area, South China Sea,” Acta Oceanol. Sin. 37 (7), 20–27 (2018). https://doi.org/10.1007/s13131-018-1241-1

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the staff of the Kazantip Nature Reserve for support and assistance in conducting the research and N.A. Litvinyuk, a researcher of the reserve, personally. The authors are also grateful to the reviewers and the scientific editor of the article for useful recommendations during the preparation of the article.

Funding

The work was carried out within the framework of a state order to the Institute of Geology of the Komi Scientific Center, Ural Branch, Russian Academy of Sciences (no. 122040600013-9), and an agreement on scientific cooperation between the Institute of Geology of the Komi Scientific Center, Ural Branch, Russian Academy of Sciences; Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences; and Joint Directorate of Protected Areas “Zapovednyi Krym.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Antoshkina or O. V. Valyaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Hannibal

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoshkina, A.I., Leonova, L.V., Valyaeva, O.V. et al. Lithological, Mineralogical, and Geochemical Features of the Lower Maeotian Sediments of the Kazantip Nature Reserve, Crimea. Geochem. Int. 62, 284–299 (2024). https://doi.org/10.1134/S0016702924030029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702924030029

Keywords:

Navigation