Skip to main content
Log in

Impact of Irrigation on Arsenic Mobilization in Groundwater from the Hetao Plain, Northern China: Evidence from Cl/Br Ratios and Stable Isotopes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Hetao Plain, located in western Inner Mongolia, China, has been used for irrigation since the second century BC. Sixty-five samples were collected, including fifty-nine groundwater and six surface water samples, for hydrochemical and oxygen and hydrogen stable isotope analysis to assess the impact of irrigation on arsenic mobilization in groundwater in the study area. The total dissolved arsenic concentration in groundwater and surface water ranged from 3.2 to 764.8 μg/L and from 6.2 to 11.2 μg/L, respectively, generally exceeding 50 μg/L in groundwater, where the reducing environment prevails. The primary groundwater recharge source was a shallow aquifer that receives a considerable amount of irrigation water. The high arsenic content in groundwater was attributed to hydrochemical processes caused by vertical leaching of dissolved halite from the unsaturated zone, which was determined based on the molar Cl/Br ratios analysis. The oxygen and hydrogen stable isotope analysis of groundwater demonstrated the mixing between the groundwater and Yellow River water. An association between lateral recharge and mixing, evaporation, leaching, vertical mixing, and arsenic enrichment in groundwater was established based on the correlation between Cl concentration and δ18O values. In an anaerobic groundwater environment, nitrate from nitrogen fertilizers indirectly oxidized As(III) to As(V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Adams, R. Titus, K. Pietersen, G. Tredoux, and C. Harris, “Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa,” J. Hydrol. 241, 91–103 (2001).

    Article  ADS  CAS  Google Scholar 

  2. S. Ahamed, M. K. Sengupta, A. Mukherjee, M. A. Hossain, B. Das, B. Nayak, A. Pal, S. C. Mukhejee, S. Pati, R. N. Dutta, G. Chattejee, A. Mukhejee, R. Srivastava, and D. Chakraborti, “Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: A severe danger,” Sci. Total Environ. 370, 310–322 (2006).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. F. J. Alcalá, and E. Custodio, “Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal,” J. Hydrol. 359, 189–207 (2008).

    Article  ADS  Google Scholar 

  4. M. W. Busbee, B. D. Kocar, and S. G. Benner, “Irrigation produces elevated arsenic in the underlying groundwater of a semi-arid basin in Southwestern Idaho,” Appl. Geochem. 24, 843–859 (2009).

    Article  ADS  CAS  Google Scholar 

  5. I. Cartwright, T. R. Weaver, and L. K. Fifield, “Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia,” Chem. Geol. 231, 38–56 (2006).

    Article  ADS  CAS  Google Scholar 

  6. H. Craig, “Isotope variation in meteoric waters,” Science 133, 1702–1703 (1961).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. S. N. Davis, D. O. Whittemor, and J. Fabryba-Martin, “Uses of chloride/bromide ratios in studies of potable water,” Ground Water 36, 338–350 (1998).

    Article  CAS  Google Scholar 

  8. Y. Deng, Y. Wang, and T. Ma, “Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia,” Appl. Geochem. 24, 587–599 (2009a).

    Article  ADS  CAS  Google Scholar 

  9. Y. Deng, Y. Wang, T. Ma, and Y. Gan, “Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China,” Environ. Geol. 56, 1467–1477 (2009b).

    Article  ADS  CAS  Google Scholar 

  10. J. R. Gat, “Oxygen and hydrogen isotopes in the hydrologic cycle,” Amu. Rev. Earth Planet. Sci. 24, 225–262 (1996).

    Article  ADS  CAS  Google Scholar 

  11. H. Guo, B. Zhang, Y. Li, Z. Berner, X. Tang, S. Norra, and D. Stuben, “Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia,” Environ. Pollut. 159, 876–883 (2011).

    Article  PubMed  CAS  Google Scholar 

  12. H. Guo, S. Yang, X. Tang, Y. Li, and Z. Shen, “Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia,” Sci. Total Environ. 393, 131–144 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Q. H. Guo, Y. X. Wang, X. B. Gao,and T. Ma, “A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China,” Environ. Geol. 52, 923–932 (2007).

    Article  ADS  CAS  Google Scholar 

  14. H. M. Guo, D. G. Wen, Z. Y. Liu, Y. F. Jia, and Q. Guo, “A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes,” Appl. Geochem. 41, 196–217 (2014).

    Article  ADS  CAS  Google Scholar 

  15. C. F. Harvey, K. N. Ashfaque, W. Yu, A. B. M. Badruzzaman, M. A. Ali, P. M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam, and M. F. Ahmed, “Groundwater dynamics and arsenic contamination in Bangladesh,” Chem. Geol. 228, 112–136 (2006).

    Article  ADS  CAS  Google Scholar 

  16. W. Kloppmann, P. N’egrel, and J. Casanova, “Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin). Evidence from boron, strontium, oxygen, and hydrogen isotopes,” Geochim. Cosmochim. Acta 65, 4087–4101 (2001).

    Article  ADS  CAS  Google Scholar 

  17. H. W. Langner, C. R. Jackson, T. R. McDermott, and W. P. Inskeep, “Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park,” Environ. Sci. Technol. 35, 3302–3309 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  18. M. I. Leybourne, and E. M. Cameron, “Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry-Cu deposits, Atacama Desert, Chile, ” Chem. Geol. 247, 208–228 (2008).

    Article  ADS  CAS  Google Scholar 

  19. F. Li, X. Song, C. Tang, C. Liu, J. Yu, and W. Zhang, “Tracing infiltration and recharge using stable isotope in Taihang Mt., North China,” Environ. Geol. 53, 687–696 (2007).

    Article  ADS  CAS  Google Scholar 

  20. P. Li, B. Li, G. Webster, Y. H. Wang, D. W. Jiang, X. Y. Dai, Z. Jiang, H. L. Dong, and Y. X. Wang, “Abundance and Diversity of Sulfate-Reducing Bacteria in High Arsenic Shallow Aquifers,” Geomicrobiol. J. 31, 802–812 (2014).

    Article  CAS  Google Scholar 

  21. J. M. McArthur, D. M. Banerjee, K. A. Hudson-Edwards, R. Mishra, R. Purohit, P. Ravenscroft, A. Cronin, R. J. Howarth, A. Chatterjee, T. Talukder, D. Lowry, S. Houghton, and D. K. Chadha, “Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications,” Appl. Geochem. 19, 1255–1293 (2004).

    Article  ADS  CAS  Google Scholar 

  22. R. Nativ, E. Adar, O. Dahan, and M. Geyh, “Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions,” Water Resources Res. 31, 253–261 (1995).

    Article  ADS  CAS  Google Scholar 

  23. H. Neidhardt, S. Norra, X. Tang, H. Guo, and D. Stuben, “Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: Results from a case study in the Inner Mongolia, China,” Environ. Pollut. 163, 8–13 (2012).

    Article  PubMed  CAS  Google Scholar 

  24. R. B. Neumann, K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, and C. F. Harvey, “Anthropogenic influences on groundwater arsenic concentrations in Bangladesh,” Nat. Geo Sci. 3, 46–52 (2010).

    Article  ADS  CAS  Google Scholar 

  25. R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, and M. Rahman, “Arsenic poisoning of Bangladesh groundwater,” Nature 395, 338–338 (1998).

    Article  ADS  PubMed  CAS  Google Scholar 

  26. D. Postma, F. Larsen, N. T. Thai, T. K. T. Pham, R. Jakobsen, P. Q. Nhan, T. V. Long, P. H. Viet, and A. S. Murray, “Groundwater arsenic concentrations in Vietnam controlled by sediment age,” Nat Geo Sci. 5, 656–661 (2012).

    Article  ADS  CAS  Google Scholar 

  27. D. Postma, and C. Boesen, “Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling,” Water Resources Res. 27, 2027–2045 (1991).

    Article  ADS  CAS  Google Scholar 

  28. L. Rodriguez-Lado, G. F. Sun, M. Berg, Q. Zhang, H. B. Xue, Q. M. Zheng, and C. A. Johnson, “Groundwater arsenic contamination throughout China,” Sci. 341, 866–868 (2013).

    Article  ADS  CAS  Google Scholar 

  29. D. B. Senn, and H. F. Hemond, “Nitrate controls on iron and arsenic in an urban lake,” Science 296, 2373–2376 (2002).

    Article  ADS  PubMed  CAS  Google Scholar 

  30. P. L. Smedley, and D.G. Kinniburgh, “A review of the source, behaviour and distribution of arsenic in natural waters,” Appl. Geochem. 17 (5), 517–568 (2002).

    Article  ADS  CAS  Google Scholar 

  31. J. Tong, H. Guo, and C. Wei, “Arsenic contamination of the soil-wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China,” Sci. Total Environ. 496, 479–487 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. M. Tsujimura, Y. Abe, T. Tanaka, J. Shimada, S. Higuchi, T. Yamanaka, G. Davaa, and D. Oyunbaatar, “Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semi-arid region in eastern Mongolia,” J. Hydrol. 333, 47–57 (2007).

    Article  ADS  Google Scholar 

  33. X. Wang, Z. Huo, P. Guo, Z. Qu, “Drip irrigation enhances shallow groundwater contribution to crop water consumption in an arid area,” Hydrol. Process 32, 747–758 (2018).

    Article  ADS  Google Scholar 

  34. J. Wurl, L. Mendez-Rodriguez, and B. Acosta-Vargas, “Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico,” J. Hydrol. 518, 447–459 (2014).

    Article  ADS  CAS  Google Scholar 

  35. X. J. Xie, Y. X. Wang, A. Ellis, C. X. Liu, M. Y. Duan, and J. X. Li, “Impact of sedimentary provenance and weathering on arsenic distribution in aquifers of the Datong basin, China: Constraints from elemental geochemistry,” J. Hydrol. 519, 3541–3549 (2014).

    Article  ADS  CAS  Google Scholar 

  36. X. J. Xie, Y. X. Wang, C. L. Su, J. X. Li, and M. D. Li, “Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China,” J. Hydrol. 424–425, 37–47 (2012).

    Article  Google Scholar 

  37. A Y. Zeng, F. H. Hao, J. X. Zhang, W. Ouyang, M. X. Zhang, “Analysis of spatiotemporal distribution characteristics of soil nitrogen in different irrigation seasons in Hetao irrigation area,” J. Environ. Sci. 05, 845–852 (2008).

    Google Scholar 

  38. J F. Zhang, Y. Zhu, X. Zhang, M. Ye, J. Yang, “Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas,” J. Hydrol. 561, 918–929 (2018).

    Article  ADS  Google Scholar 

  39. T. X. Zhao, Y. Zhu, Y. Zhu, M. Ye, B. Jia, W. Mao, “A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements,” Agric. Water Manag. 264, 107500 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks go to Zhenlong Li, Zhen Di, and Wei Song at the Centers for Disease Control and Prevention of Hangjinhouqi County for their support for sample collection. The authors thank professors Hongyin Han and Yiqun Gan for their help with sample measurements. We appreciate the Associated Editor Dr. E.S. Sidkina and two anonymous reviewers’ constructive suggestion and comments on this manuscript.

Funding

This project was funded jointly by the Open Fund of Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake (2022SKSH03), and Open Funding Project of the Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources (SK202301-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihui Dong.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yihui Dong, Shiyi Zhu, Yapeng Xie et al. Impact of Irrigation on Arsenic Mobilization in Groundwater from the Hetao Plain, Northern China: Evidence from Cl/Br Ratios and Stable Isotopes. Geochem. Int. (2024). https://doi.org/10.1134/S0016702923700192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0016702923700192

Keywords:

Navigation