Skip to main content
Log in

Effect of pH, CO2, and Organic Ligand on the Kinetics of Talc and Lizardite Dissolution

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Natural Mg phyllosilicates are potential sources of divalent cations, which are necessary for the mineralization of CO2 into carbonates. The influence of inorganic (\({\text{HCO}}_{3}^{ - }\)) and organic (oxalate and citrate) ligands on the dissolution kinetics of talc and serpentine was studied in experiments in a flow-through reactor at 25°C. The dissolution rates of natural silicates r (mol cm–2 s–1) in solutions of various composition were calculated at the stationary stage of dissolution after a rapid initial stage, which is characterized by the formation of a surface leached layer depleted in magnesium. The presence of ligands increases the dissolution rate of magnesium silicates due to the formation of surface complexes, which leads to magnesium separation from the surface and transfer into solution. The initial incongruent stage may be the most promising for the development of carbonation technologies, because the minimum removal of the network-forming elements prevents the undesirable formation of secondary minerals (for example, clays), which exclude divalent cations from the carbonation process and greatly reduce the permeability of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. P. Aagaard and H. Helgeson, “Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions: I. Theoretical considerations,” Am. J. Plant Sci. 282 (3), 237–285 (1982).

    CAS  Google Scholar 

  2. K. Amram and J. Ganor, “The combined effect of pH and temperature on smectite dissolution rate under acidic conditions,” Geochim. Cosmochim. Acta 69 (10), 2535–2546 (2005).

    Article  CAS  Google Scholar 

  3. R. Bales and J. Morgan, “Dissolution kinetics of chrysotile at pH 7 to 10,” Geochim. Cosmochim. Acta 49 (11), 2281–2288 (1985).

    Article  CAS  Google Scholar 

  4. B. Bonfils, C. Julcour-Lebigue, F. Guyot, F. Bodénan, P. Chiquet, and F. Bourgeois, “Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives,” Int. J. Greenh. Gas Control. 9, 334–346 (2012).

    Article  CAS  Google Scholar 

  5. P.-K. F. Chin and G. Mills, “Kinetics and mechanisms of kaolinite dissolution: effects of organic ligands,” Chem. Geol. 90 (3–4), 307–317 (1991).

    Article  CAS  Google Scholar 

  6. D. Daval, R. Hellmann, I. Martinez, S. Gangloff, and F. Guyot, “Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2,” Chem. Geol. 351, 245–256 (2013).

    Article  CAS  Google Scholar 

  7. S. Eloneva, E. Puheloinen, J. Kanerva, A. Ekroos, R. Zevenhoven, and C. Fogelholm, “Co-utilisation of CO2 and steelmaking slags for production of pure CaCO-3—legislative issues,” J. Clean. Prod. 18 (18), 1833–1839 (2010).

    Article  CAS  Google Scholar 

  8. S. Gerdemann, W. Oconnor, D. Dahlin, L. Penner, and H. Rush, “Ex situ aqueous mineral carbonation,” Environ. Sci. Technol. 41 (7), 2587–2593 (2007).

    Article  CAS  Google Scholar 

  9. S. R. Gislason, W. S. Broecker, E. Gunnlaugsson, S. Snæbjörnsdóttir, K. G. Mesfin, H. A Alfredsson, E. S. Aradottir, B. Sigfusson, I. Gunnarsson, M. Stute, J. M. Matter, M. Th. Arnarson, I. M. Galeczka, S. Gudbrandsson, G. Stockman, D. Wolff-Boenisch, A. Stefansson, E. Ragnheidardottir, T. Flaathen, A. P. Gysi, J. Olssen, K. Didriksen, S. Stipp, and B. and Oelkersg E. H. Menez, “Rapid solubility and mineral storage of CO2 in basalt,” Energy Proc. 63, 4561–4574 (2014).

    Article  CAS  Google Scholar 

  10. S. Golubev and O. Pokrovsky, “Experimental study of the effect of organic ligands on diopside dissolution kinetics,” Chem. Geol. 235 (3–4), 377–389 (2006).

    Article  CAS  Google Scholar 

  11. M. Hänchen, V. Prigiobbe, G. Storti, T. M. Seward, and M. Mazzotti, “Dissolution kinetics of forsteritic olivine at 90–150°C including effects of the presence of CO2,” Geochim. Cosmochim. Acta 70 (17), 4403–4416 (2006).

    Article  Google Scholar 

  12. A. L. Harrison, I. M. Power, and G. M. Dipple, “Accelerated carbonation of brucite in mine tailings for carbon sequestration,” Environ. Sci. Technol. 47 (1), 126–134 (2013).

    Article  CAS  Google Scholar 

  13. W. Huijgen, R. Comans, and G. Witkamp, “Cost evaluation of CO2 sequestration by aqueous mineral carbonation,” Energy Convers. Manag. 48 (47), 1923–1935 (2007).

    Article  CAS  Google Scholar 

  14. E. H.B. Kandji, B. Plante, B. Bussière, G. Beaudoin, and P. Dupont, “Kinetic testing to evaluate the mineral carbonation and metal leaching potential of ultramafic tailings: Case study of the Dumont Nickel Project, Amos, Québec,” Appl. Geochem. 84, 262–276 (2017).

    Article  CAS  Google Scholar 

  15. S. Krevor and K. S. Lackner, “Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration,” Int. J. Greenh. Gas Control 5 (4), 1073–1080 (2011).

    Article  CAS  Google Scholar 

  16. A. C. Lasaga, “Atomic treatment of mineral-water surface reactions. In Mineral-Water Interface Geochemistry, Ed. by F. Michael, M. F. Hochella, and A. F. White, Rev. Mineral. 23 (Mineral. Soc. Am., Washington, 1990), pp. 17–85.

    Google Scholar 

  17. V. I. Lebedev, “Some crystal chemical tendencies in the formation of clay minerals in light of the ion–atom radii systems,” Vestn. Lening. Gos. Univ., No. 6, 28–36 (1972).

  18. K. Lechat, M. Lemieux, J. Molson, G. Beaudoin, and R. Hebert, “Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada,” Int. J. Greenh. Gas Control. 47, 110–121 (2016).

    Article  CAS  Google Scholar 

  19. X. Lu, K. J. Carroll, C. C. Turvey, and G. M. Dipple, “Rate and capacity of cation release from ultramafic mine tailings for carbon capture and storage,” J. Appl. Geochem. 140, 105285 (2022).

    Article  CAS  Google Scholar 

  20. V. Metz and J. Ganor, “Stirring effect on kaolinite dissolution rate,” Geochim. Cosmochim. Acta 65 (20), 3475–3490 (2001).

    Article  CAS  Google Scholar 

  21. K. C. Newlands, M. Foss, T. Matchei, J. Skibsted, and D. E. Macphee, “Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash–like compositions,” J. Am. Ceram. Soc. 100 (5), 1941–1955 (2017).

    Article  CAS  Google Scholar 

  22. A. A. Olsen and D. Rimstidt, “Oxalate-promoted forsterite dissolution at low pH,” Geochim. Cosmochim. Acta 72 (7), 1758–1766 (2008).

    Article  CAS  Google Scholar 

  23. A. Park and L. Fan, “CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process,” Chem. Eng. Sci. 59, 5241–5247 (2004).

    Article  CAS  Google Scholar 

  24. O. Pokrovsky and J. Schott, “Kinetics and mechanism of forsterite dissolution at 25°C and pH from 1 to 12,” Geochim. Cosmochim. Acta 64 (19), 3313–3325 (2000).

    Article  CAS  Google Scholar 

  25. V. Prigiobbe, M. Hänchen, M. Werner, R. Baciocchi, and M. Mazzotti, “Mineral carbonation process for CO2 sequestration,” Energy Procedia. 1 (1), 4885–4890 (2009).

    Article  Google Scholar 

  26. V. Prigiobbe and M. Mazzotti, “Dissolution of olivine in the presence of oxalate, citrate, and CO2 at 90°C and 120°C,” Chem. Eng. Sci. 66 (24), 6544–6554 (2011).

    Article  CAS  Google Scholar 

  27. G. Saldi, S. Köhler, N. Marty, and E. Oelkers, “Dissolution rates of talc as a function of solution composition, pH and temperature,” Geochim. Cosmochim. Acta 71 (14), 3446–3457 (2007).

    Article  CAS  Google Scholar 

  28. J. Schott and R. A. Berner, “Dissolution mechanisms of pyroxenes and olivines during weathering,” In The Chemistry of Weathering, Ed. by J. I. Drever, NATO ASI Ser., Ser. C: Math. Phys. Sci. 149, 35–53 (1985).

  29. W. Stumm, Chemistry of the Solid–Water Interface (Wiley & Sons, New York, 1992).

    Google Scholar 

  30. W. Stumm, “Reactivity at the mineral-water interface: dissolution and inhibition,” Colloids Surf., A 120 (1–3), 143–166 (1997).

    Article  CAS  Google Scholar 

  31. C. Sun, Z. Yao, Q. Wang, L. Guo, and X. Shen, “Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral, ‘ Appl. Surf. Sci. 614, 156063 (2023).

    Article  CAS  Google Scholar 

  32. S. Teir, R. Kuusik, and C. Fogelholm, “Production of magnesium carbonates from serpentinite for long-term storage of CO2,” Int. J. Miner. Process. 85 (1–3), 1–15 (2007).

    Article  CAS  Google Scholar 

  33. N. Tsomaia, S. Brantley, J. Hamilton, C. Pantano, and K. Mueller, “NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal,” Am. Mineral. 88, 54–67 (2003).

    Article  CAS  Google Scholar 

  34. F. Wang, D. Dreisinger, M. Jarvis, and T. Hitchins, “Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration,” Miner. Eng. 131, 185–197 (2019).

    Article  Google Scholar 

  35. H. Wang, Q. Feng, and K. Liu, “The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process,” Appl. Clay Sci. 132–133, 273–280 (2016).

    Article  Google Scholar 

  36. E. Weissbart and J. Rimstidt, “Wollastonite: Incongruent dissolution and leached layer formation,” Geochim. Cosmochim. Acta 64 (23), 4007–4016 (2000).

    Article  CAS  Google Scholar 

  37. R. Wogelius and J. Walther, “Olivine dissolution at 25°C: Effects of pH, CO2, and organic acids,” Geochim. Cosmochim. Acta 55(4), 943–954 (1991).

    Article  CAS  Google Scholar 

  38. R. Wogelius and J. Walther, “Olivine dissolution kinetics at near-surface conditions,” Chem. Geol. 97, 101–112 (1992).

    Article  CAS  Google Scholar 

  39. R. Zevenhoven, S. Teir, and S. Eloneva, “Heat optimization of a staged gas-solid mineral carbonation process for long–term CO2 storage,” Energy 33 (2), 362–370 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the scientific editor M.V. Mironenko, the reviewer V.A. Alekseev, and the anonymous reviewer for constructive criticism of the content of the manuscript and illustrative material.

Funding

This study was supported by Russian Science Foundation, project no. 22-27-00035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Karaseva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaseva, O.N., Lakshtanov, L.Z., Khanin, D.A. et al. Effect of pH, CO2, and Organic Ligand on the Kinetics of Talc and Lizardite Dissolution. Geochem. Int. 62, 393–402 (2024). https://doi.org/10.1134/S0016702923700167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923700167

Keywords:

Navigation