Skip to main content
Log in

Roméite Solubility in the Fluid Immiscibility Region of the NaF–H2O System at 800°C, 200 MPa

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

New data on roméite (CaNa)Sb2O6F solubility in the NaF–H2O system of P–Q type have been obtained within a wide range of sodium fluoride concentrations (from 0 to 25 wt % NaF). The concentration of antimony, in equilibrium with roméite and fluorite, in the range of NaF concentrations from 1 to 8 mol kg–1 H2O (25 wt % NaF), is in the range of 0.02–0.2 mol kg–1 H2O. According to the data, the concentration of antimony in phases L1 and L2 in the region of fluid immiscibility of the NaF–H2O system at 800°C, 200 MPa and fO2 = 50 Pa, specified by the Cu2O–CuO buffer, is 0.4 and 2.1 wt % Sb, respectively. Our experiments were the first ever to produce skeletal fluorite crystals and the intermetallic compound Pt5Sb, which belongs the hexagonal crystal system and has the following lattice parameters (LP): a = b = 4.56(4) Å, c = 4.229(2) Å, and α = β = 90°, γ = 120°. Pentaplatinum antimonide was formed on the inner surface of the Pt capsules at 800°C, Р = 200 MPa, and fO2 ≤ 10–3.47 Pa (Cu–Cu2O buffer) in experiments on the incongruent dissolution of roméite, which causes a sharp decrease (more than 1000 times) in antimony concentration in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. N. N. Akinfiev, V. S. Korzhinskaya, N. P. Kotova, A. F. Redkin, and A. V. Zotov, “Niobium and tantalum in hydrothermal fluids: thermodynamic description of hydroxide and hydroxofluoride complexes,” Geochim. Cosmochim. Acta. 280, 102–115 (2020). https://doi.org/10.1016/j.gca.2020.04.009

    Article  CAS  Google Scholar 

  2. J. Amador, E. Gutierrez-Puebla, M. A. Monge, I. Rasines, and C. Ruiz-Valero, “Diantimony tetraoxides revisited,” Inorg. Chem. 27, 1367–1370 (1988). https://doi.org/10.1021/ic00281a011

    Article  CAS  Google Scholar 

  3. D. Atencio, M. E. Ciriotti, and M. B. Andrade, “Fluorcalcioroméite, (Ca,Na)2Sb25+(O,OH)6F, a new roméite–group mineral from Starlera mine, Ferrera, Grischun, Switzerland: description and crystal structure,” Mineral. Mag. 77 (4), 467–473 (2013). https://doi.org/10.1180/minmag.077.4.06

    Article  CAS  Google Scholar 

  4. C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (John Wiley–Interscience, New York, 1976).

    Google Scholar 

  5. S. Bahfenne and R. L. Frost, “Raman spectroscopic study of the antimonite mineral romeite,” Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 75 (2), 637–639 (2010). https://doi.org/10.1016/j.saa.2009.11.031

    Article  CAS  Google Scholar 

  6. J. Brugger, R. Gieré, S. Graeser, and N. Melsser, “The crystal chemistry of roméite,” Contrib. Mineral. Petrol. 127 (1–2), 136–146 (1997). https://doi.org/10.1007/s004100050271

    Article  CAS  Google Scholar 

  7. C. A. Cody, L. DiCarlo, and R. K. Darlington, “Vibrational and thermal study of 1007 antimony oxides,” Inorg. Chem. 18 (6), 1572–1576 (1979). https://doi.org/10.1021/ic50196a036

    Article  CAS  Google Scholar 

  8. G. A. Diemar, M. Filella, P. Leverett, and P. A. Williams, “Dispersion of antimony from oxidizing ore deposits,” Pure Appl. Chem. 81 (9), 1547–1553 (2009). https://doi.org/10.1351/pac-con-08-10-21

    Article  CAS  Google Scholar 

  9. P. Durussel and P. Feschotte, “Les systèmes binaires Pd–Sb et Pt–Sb,” J. Alloys Compd. 176 (1), 173–181 (1991). https://doi.org/10.1016/0925-8388(91)90023-O

    Article  CAS  Google Scholar 

  10. O. V. Eremin, G. A. Yurgenson, M. A. Solodukhina, and E. S. Epova, “Supergene antimony and bismuth minerals: methods of estimation of their Gibbs standard potentials,” in Mineralogy of Technogenesis–2018 (Ural’sk. Otd. RAN, Yekaterinburg, 2018), pp. 103–131 [in Russian].

    Google Scholar 

  11. M. Filella and P. M. May, “Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters,” Geochim. Cosmochim. Acta. 67 (21), 4013–4031 (2003). https://doi.org/10.1016/S0016-7037(03)00095-4

    Article  CAS  Google Scholar 

  12. K. H. Gayer and A. B. Garrett, “The equilibria of antimonous oxide (rhombic)in dilute solutions of hydrochloric acid and sodium hydroxide at 25°C,” J. Am. Chem. Soc. 74 (9), 2353–2354 (1952). https://doi.org/10 (1952).1021/ja01129a051

    Article  CAS  Google Scholar 

  13. H. Hashimoto, T. Nishimura, and Umetsu Y. and, “Hydrolysis of antimony(III)–hydrochloric acid solution at 25°C. Mater. Trans. 44 (8), 1624–1629 (2003). https://doi.org/10.2320/matertrans.44.1624

    Article  CAS  Google Scholar 

  14. I. Herath, M. Vithanage, and J. Bundschuh, “Antimony as a global dilemma: geochemistry, mobility, fate and transport,” Environ. Pollut. 223, 545–559 (2017). https://doi.org/10.1016/j.envpol.2017.01.057

    Article  CAS  Google Scholar 

  15. V. P. Itkin and C. B. Alcock, “The Pt–Sb (platinum–antimony) system,” J. Phase Equilib. 17, 356–361 (1996). https://doi.org/10.1007/BF02665564

    Article  CAS  Google Scholar 

  16. W.-S. Kim, “Phases and phase equilibria of the Pt–Sb system,” Korean J. Cryst. 4 (1), 18–24 (1993).

    Google Scholar 

  17. W.-S. Kim and G. Y. Chao, “Phase relations in the system Pt–Sb–Te,” Can. Mineral. 28, 675–685 (1990).

    Google Scholar 

  18. R. V. Kuzhuget, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Kyzyl, 2014).

  19. J. Liu, Y. Zhang, and C. Guo, “Thermodynamic assessment of the Pt–Sb system,” Int. J. Nonferrous Metallurgy. 2, 95–99 (2013). https://doi.org/10.4236/ijnm.2013.23013

    Article  CAS  Google Scholar 

  20. A. F. Redkin, N. P. Kotova, and Yu. B. Shapovalov, “Liquid immiscibility in the system NaF–H2O at 800°S and 200–230 MPa and its effect on the microlite solubility,” J. Solution Chem. 44 (10), 2008–2026 (2015). https://doi.org/10.1007/s10953-015-0394-1

    Article  CAS  Google Scholar 

  21. A. F. Redkin, N. P. Kotova, and Yu. B. Shapovalov, “Liquid immiscibility in the system NaF–H2O and microlite solubility at 800°C,” Dokl. Earth Sci. 469 (1), 722–727 (2016). https://doi.org/10.1134/S1028334X16070151

    Article  CAS  Google Scholar 

  22. A. F. Redkin, N. P. Kotova, Yu. B. Shapovalov, and V. I. Velichkin, “Experimental study and thermodynamic modeling of niobium, tantalum, and uranium behaviour in supercritical fluoride hydrothermal solutions,” In: Solution Chemistry Advances in Research and Applications, Ed by Yongliang Xiong (Nova Science Publishers, New York, 2018), pp. 1–46.

    Google Scholar 

  23. A. F. Redkin, N. P. Kotova, and Yu. B. Shapovalov, “Pyrochlore solubility in NaF solutions at 800°C and p = 170–230 MPa,” Dokl. Earth Sci. 507 (1), 887–890 (2022). https://doi.org/10.1134/S1028334X22700349

    Article  CAS  Google Scholar 

  24. R. A. Robie, B. S. Hemingway, and J. R. Fisher, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” US Geol Surv Bull 1452, 456 p (1978).

  25. A. Timofeev, A. A. Migdisov, and A. E. Williams-Jones, “An experimental study of the solubility and speciation of niobium in fluoride–bearing aqueous solutions at elevated temperature,” Geochim. Cosmochim. Acta 158, 103–111 (2015). https://doi.org/10.1016/j.gca.2015.02.015

    Article  CAS  Google Scholar 

  26. A. R. Tourky and A. A. Mousa, “Studies of some metal electrodes. Part V. The amphoteric properties of antimony tri- and pent–oxide,” J. Chem. Soc., 759–763 (1948). https://doi.org/10.1039/JR9480000759

  27. A. V. Zotov, N. D. Shikina, and N. N. Akinfiev, “Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3(aq) at hydrothermal conditions,” Geochim. Cosmochim. Acta 67 (10), 1821–1836 (2003). https://doi.org/10.1016/S0016-7037(00)01281-4

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.A. Drozhzhina (Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences) for XRD analyses of the solid experimental products, Dr. V.K. Karandashev (Institute of Problems of the Technologies of Microelectronics and Superpure Materials, Russian Academy of Sciences) and Dr. A.Yu. Bychkov (Faculty of Geology, Moscow State University) for ICP analyses of solutions after the experiments. We are thankful to the reviewers for discussion and valuable comments and to the scientific editor O.A. Lukanin and the editors of the journal for attention to this manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20–05–00307a, and the Fundamental Research Program in the Russian Federation, project FMUF–2022-0003. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Redkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redkin, A.F., Kotova, N.P., Shapovalov, Y.B. et al. Roméite Solubility in the Fluid Immiscibility Region of the NaF–H2O System at 800°C, 200 MPa. Geochem. Int. 62, 384–392 (2024). https://doi.org/10.1134/S0016702923700155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923700155

Keywords:

Navigation