Skip to main content
Log in

Formation of Richterite in the EnstatiteDiopside System in the Presence of K2CO3Na2CO3CO2H2O Fluid: Implications for the Processes of Mantle Metasomatism

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents data on the formation of K–Na richterite in the enstatite + diopside association with K2CO3–Na2CO3–CO2–H2O fluid at 3 GPa and 1000°C as a model for the formation of this mineral in peridotites of the upper mantle. Richterite formation depends on the (H2O + CO2)/(K2CO3 + Na2CO3) and K2CO3/Na2CO3 ratios in the starting material. A high concentration of alkaline components in the fluid leads to the decomposition of clinopyroxene, the formation of olivine, and a change in the component composition of the pyroxene and amphibole. Fluids with a high potassium concentration are favorable for the formation of K-richterite similar in composition to that formed in metasomatized peridotites of the upper mantle. In some cases, such a fluid leads to the decomposition of amphibole and stabilization of alkaline melt. An increase in the activity of the sodium component results in richterite similar in composition to richterite from lamproites. The clarified relations can be used to assess the activities of fluid components and conditions for the formation of K-richterite. To update the data bank of the Raman spectra of minerals, the largest and most homogeneous amphibole crystals of different compositions were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. K. Aoki, “Origin of phlogopite and potassic richterite bearing peridotite xenoliths from South Africa. Contrib. to Mineral. Petrol. 53 (3), 145–156 (1975).

    Article  CAS  Google Scholar 

  2. A. I. Apopei and N. Buzgar, “The Raman study of amphiboles,” Anal. Stiintif. Univer., Al. I. Cuza Iasi. Sect. 2. Geol. 56 (1), 57–83 (2010).

    Google Scholar 

  3. R. V. Conceição and D. H. Green, “Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite,” Lithos 72 (3–4), 209–229 (2004).

    Article  Google Scholar 

  4. J. A.D. Connolly and M. E. Galvez, “Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer,” Earth Planet. Sci. Lett. 501, 90–102 (2018).

    Article  CAS  Google Scholar 

  5. Ventura G. Della, F. C. Hawthorne, B. Mihailova, and A. Sodo, “Raman and FTIR spectroscopy of synthetic amphiboles: I. The OH librational bands and the determination of the OH–F content of richterites via Raman spectroscopy,” Can. Mineral. 59 (1), 31–41 (2021).

    Article  Google Scholar 

  6. P. J. Downes, J. Wartho, and B. J. Griffin, “Magmatic evolution and ascent history of the Aries micaceous kimberlite, Central Kimberley Basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV laser 40Ar/39Ar analysis of phlogopite–biotite,” J. Petrol. 47 (9), 1751–1783 (2006).

    Article  CAS  Google Scholar 

  7. M. Dumanska-Słowik, T. Powolny, L. Natkaniec-Nowak, and K. Stankiewicz, “Mineralogical and geochemical implications on the origin of dianite from the alkaline Murun Complex (Eastern Siberia, Russia),” Ore Geol. Rev. 141, 1–13 (2022).

    Article  Google Scholar 

  8. A. Erlank, “Kimberlite potassic richterite and the distribution of potassium in the upper mantle,” IKC: Extended Abstracts, (1973), Vol. 1, pp. 103–106.

    Google Scholar 

  9. A. J. Erlank, F. G. Waters, C. J. Hawkesworth, S. E. Haggerty, H. L. Allsopp, R. S. Rickard, and M. A. Menzies, “Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa,” Mantle Metasomatism (Academic Press, 1987), pp. 221–311.

  10. A. Fitzpayne, A. Giuliani, J. Hergt, D. Phillips, and P. Janney, “New geochemical constraints on the origins of MARID and PIC rocks: Implications for mantle metasomatism and mantle-derived potassic magmatism,” Lithos 318–319, 478–493 (2018).

    Article  Google Scholar 

  11. S. F. Foley, I. S. Ezad, der Laan S. R. van, and M. Pertermann, “Melting of hydrous pyroxenites with alkali amphiboles in the continental mantle: 1. Melting relations and major element compositions of melts,” Geosci. Front. 13, 101380 (2022).

    Article  CAS  Google Scholar 

  12. S. F. Foley, D. S. Musselwhite, and der Laan S. R. Van, “Melt compositions from ultramafic vein assemblages in the lithospheric mantle: A comparison of cratonic and non-cratonic settings,” Proceedings of the IKC (Red Roof Design, Cape Town, 1999), pp. 238–246.

  13. W. S. Fyfe, “Hydrothermal synthesis and determination of equilibrium between minerals in the subliquidus region,” J. Geol. 68, 553–566 (1960).

    Article  Google Scholar 

  14. M. Gao, H. Xu, F. S. Foley, J. Zhang, and Y. Wang, “Ultrahigh-pressure mantle metasomatism in continental collision zones recorded by post–collisional mafic rocks,” GSA Bull. 135, 3066–3082 (2023).

    CAS  Google Scholar 

  15. F. Gervasoni, T. Jalowitzki, Rocha M. Peres, Weska R. Kalikowski, E. Novais-Rodrigues, de Freitas Rodrigues R. Antonio, Y. Bussweiler, Rocha Barbosa E. Soares, J. Berndt, E. Luiz Dantas, V. da Silva Souza, and S. Klemme, “Recycling process and proto-kimberlite melt metasomatism in the lithosphere-asthenosphere boundary beneath the Amazonian Craton recorded by garnet xenocrysts and mantle xenoliths from the Carolina kimberlite,” Geosci. Front. 13 (5), 1–17 (2022).

    Google Scholar 

  16. D. H. Green, W. O. Hibberson, A. Rosenthal, I. Kovács, G. M. Yaxley, T. J. Falloon, and F. Brink, “Experimental study of the influence of water on melting and phase assemblages in the upper mantle,” J. Petrol. 55 (10), 2067–2096 (2014).

    Article  CAS  Google Scholar 

  17. F. C. Hawthorne, R. Oberti, G. E. Harlow, W. V. Maresch, R. F. Martin, J. C. Schumacher, and M. D. Welch, “Nomenclature of the amphibole supergroup,” Am. Mineral. 97, 2031–2048 (2012).

    Article  CAS  Google Scholar 

  18. E. Huang, Raman Spectroscopic Study of Amphibole, PhD thesis in Chinese (2003).

  19. A. P. Jones, J. V. Smith, and J. B. Dawson, “Mantle metasomatism in 14 veined peridotites from Bultfontein Mine, South Africa,” J. Geol. 90 (4), 435–453 (1982).

    Article  CAS  Google Scholar 

  20. G. Kaur and R. H. Mitchell, “Mineralogy of the P-12 K–Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh, India: implications for subduction-related magmatism in eastern India,” Mineral. Petrol. 110 (2–3), 223–245 (2015).

    Article  Google Scholar 

  21. J. Konzett, “Phase relations and chemistry of Ti-rich K‑richterite-bearing mantle assemblages: An experimental study to 8.0 GPa in a Ti-KNCMASH system,” Contrib. Mineral. Petrol. 128 (4), 385–404 (1997).

    Article  CAS  Google Scholar 

  22. J. Konzett and Y. W. Fei, “Transport and storage of potassium in the Earth’s upper mantle and transition zone: An experimental study to 23 GPa in simplified and natural bulk compositions,” J. Petrol. 41 (4), 583–603 (2000).

    Article  CAS  Google Scholar 

  23. J. Konzett, R. J. Sweeney, A. B. Thompson, and P. Ulmer, “Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH system to 8.5 GPa,” J. Petrol. 38 (5), 537–568 (1997).

    Article  CAS  Google Scholar 

  24. J. Konzett and P. Ulmer, “The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions,” J. Petrol. 40 (4), 629–652 (1999).

    Article  CAS  Google Scholar 

  25. J. Konzett, R. Wirth, Ch. Hauzenberger, and M. Whitehouse, “Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: Evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases,” Lithos 182–183, 165–184 (2013).

    Article  Google Scholar 

  26. Yu. A. Litvin, Physicochemical Studies of Melting of Deep-Seated Matter of the Earth (Nauka, Moscow, 1991) [inRussian].

    Google Scholar 

  27. R. W. Luth, “Experimental study of the system phlogopite–diopside from 3–5 to 17 GPa,” Am. Mineral. 82, 1198–1210 (1997).

    Article  CAS  Google Scholar 

  28. C. E. Manning, “The chemistry of subduction-zone fluids,” Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  CAS  Google Scholar 

  29. K. Niida and D. H. Green, “Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions,” Contrib. Mineral. Petrol. 135 (1), 18–40 (1999).

    Article  CAS  Google Scholar 

  30. S. Y. O’Reilly and W. L. Mantle metasomatism. Griffin, “In Metasomatism and the Chemical Transformation of Rock, Ed. by D. E. Harlov and H. Austerheim (Springer, Berlin–Heidelberg, 471–533 (2013).

    Google Scholar 

  31. C. Rinaudo, E. Belluso, and D. Gastaldi, “Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos,” Mineral. Mag. 68 (3), 443–453 (2004).

    Article  Google Scholar 

  32. C. Rinaudo, D. Gastaldi, E. Belluso, and S. Capella, “Application of Raman Spectroscopy on asbestos fibre identification,” Neues Jahrb. Mineral. Abh. 182 (1), 31–36 (2005).

    CAS  Google Scholar 

  33. O. G. Safonov and V. G. Butvina, “Indicator Reactions of K and Na activities in the upper mantle: natural mineral assemblages, experimental data, and thermodynamic modeling,” Geochem. Int. 54 (10), 893–908 (2016).

    Article  Google Scholar 

  34. H. F. Shurvell, L. Rintoul, and P. M. Fredericks, “Infrared and Raman spectra of jade and jade minerals,” Int. J. Vib. Spectrosc. 5 (5), 4 (2001). (www.ijvs.com)

  35. A. Sudo and Y. Tatsumi, “Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones,” Geophys. Res. Lett. 17 (1), 29–32 (1990).

    Article  CAS  Google Scholar 

  36. Y. Tatsumi, T. Kogiso, and S. Nohda, “Formation of a third volcanic chain in Kamchatka: Generation of unusual subduction-related magmas,” Contrib. Mineral. Petrol. 120 (2), 117–128 (1995).

    Article  CAS  Google Scholar 

  37. R. G. Trønnes, “Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa,” Mineral. Petrol. 74 (2–4), 129–148 (2002).

    Article  Google Scholar 

  38. Achterbergh E. van, W. L. Griffin, and J. Stiefenhofer, “Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes,” Contrib. Mineral. Petrol. 141 (4), 397–414 (2001).

    Article  Google Scholar 

  39. C. Wagner and D. Velde, “Mineralogy of two peralkaline, arfvedsonite-bearing minettes. A new occurrence of Zn-rich chromite,” Bull. Minéral. 108 (2), 173–187 (1985).

    Article  CAS  Google Scholar 

  40. C. Wagner and D. Velde, “The mineralogy of K-richterite bearing lamproites,” Am. Mineral. 71, (1–2), 17–37 (1986).

    CAS  Google Scholar 

  41. F. G. Waters, A. J. Erlank, and L. R.M. Daniels, “Contact relationships between MARID rock and metasomatised peridotite in a kimberlite xenolith,” Geochem. J. 23 (1), 11–17 (1989).

    Article  CAS  Google Scholar 

  42. R. Zimmermann, M. Gottschalk, W. Heinrich, and G. Franz, “Experimental Na-K distribution between amphiboles and aqueous chloride solutions, and a mixing model along the richterite-K-richterite join,” Contrib. Mineral. Petrol. 126 (3), 252–264 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the scientific editor A.V. Girnis and the reviewers.

Funding

This work was supported by the Russian Science Foundation, project 23-27-00065, https://rscf.ru/project/23-27-00065. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Limanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limanov, E.V., Butvina, V.G., Safonov, O.G. et al. Formation of Richterite in the EnstatiteDiopside System in the Presence of K2CO3Na2CO3CO2H2O Fluid: Implications for the Processes of Mantle Metasomatism. Geochem. Int. 62, 356–365 (2024). https://doi.org/10.1134/S001670292370012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292370012X

Keywords:

Navigation