Skip to main content
Log in

Development of V.I. Vernadsky’s Ideas about Natural Waters: Biogeochemical Processes and Water Quality

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper analyzes the effect of ever increasing anthropogenic impacts on land waters and analyzes V.I. Vernadsky’s works on natural waters and their significance for assessing modern biogeochemical processes. The paper demonstrates the scale of the influx of chemical elements and compounds into the modern biosphere as a result of the emission of greenhouse gases, nitrogen and phosphorus dissemination, acid-forming gases, and metals. Key changes in some regions and the biosphere as a whole are highlighted. The consequences of anthropogenically induced processes are illustrated by the example of a remote Arctic region, the northern Kola Peninsula in Russia: the effects of climate warming and the acidification and eutrophication of the waters and their enrichment in metals. In the wake of V.I. Vernadsky’s ideas about the role of land waters in supporting the life necessities of the planet’s human population, approaches to assessing water quality from the standpoint of the ecological paradigm are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. V. A. Abakumov, V. N. Talskikh, V. I. Popchenko, G. P. Bulgakov, N. L. Svirskaya, S. V. Krineva, I. I. Popchenko, V. A. Semin, V. M. Khromov, I. M. Raspopov, G. L. Margolina, L. D. Voronova, and I. N. Pushkar, Manual on Hydrobiological Monitoring of Fresh-Water Ecosystems (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

  2. A. A. Abid and S. S. Gill, Eutrophication: Causes, Consequences and Control. Volume 2 (Springer, Dordrecht–Heidelberg–London–New York, 2014).

  3. O. A. Alekin, Principles of Hydrochemisty, 2nd Ed. (Gidrometeorol. Izd-vo, 1970) [in Russian].

  4. IASC AMAP. Arctic Freshwater System in a Changing Climate, WCRP CliC Project. CliC/AMAP/IASC. http:// www.amap.no/documents/doc/The-Arctic-Freshwater-System-in-a-Changing–Climate/1375 (2016).

  5. Synthesis Report: Climate Change AR5, 2014. https://www.ipcc.ch/report/ar5/syr/Ar5/ar5.html

  6. Climate Change 2022: Mitigation of Climate Change – IPCC. Sixth Assessment Report AR6, 2022. https://www.ipcc. ch/report/sixth-assessment-report.

  7. P. Bjerregaard and O. Andersen, “Ecotoxicology of metals – sources, transport, and effects in the ecosystem, in Handbook on the Toxicology of Metals, Ed. by G. F. Nordberg, B. A. Fowler, and M. Nordberg (Elsevier, Amsterdam, 2014).

  8. A. F. Bouwman, A. H. W. Beusen, L. Lassaletta, D. F. van Apeldoorn, H. J. M. van Grinsven, J. Zhang, and M. K. van Ittersum, “Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland,” Sci. Rept. 7 (1), 40366. https://doi.org/10 (2017).1038/srep40366

  9. G. W. Bryan, “Heavy metal contamination in the sea,” Marine Pollution, Ed. by R. Johnston (Academic Press, London, 1976), pp. 185–302.

    Google Scholar 

  10. T. A. Clair, I. F. Dennis, and R. Vet, “Water chemistry and dissolved organic carbon trends in lakes from Canada’s Atlantic Provinces: no recovery from acidification measured after 25 years of lake monitoring,” J. Fish. Aquat. Sci. 68, 663–674 (2011).

    Article  Google Scholar 

  11. J. M. Clark, S. H. Bottrell, C. D. Evans, D. T. Monteith, R. Bartlett, R. Rose, R. J. Newton, and P. J. Chapman, “The importance of the relationship between scale and process in understanding long–term DOC dynamics,” Sci. Total Environ. 408, 2768 (2010).

    Article  Google Scholar 

  12. J. R. Corman, B. L. Bertolet, N. J. Casson, S. D. Sebestyen, R. K. Kolka, and E. H. Stanley, “Nitrogen and phosphorus loads to temperate seepage lakes associated with allochthonous dissolved organic carbon loads,” Geophys. Res. Lett. 45, 5481–5490 (2018).

    Article  Google Scholar 

  13. V. I. Danilov–Danilyan and I. E. Reif, Biosphere and Civilization (Entsiklopediya, Moscow, 2016) [in Russian].

    Google Scholar 

  14. Wit H. A. De, J. L. Stoddard, D. T. Monteith, J. E. Sample, K. Austnes, S. Couture, J. Fölster, S. N. Higgins, D. Houle, J. Hruška, P. Krám, J. Koṕacek, A. M. Paterson, S. Valinia, H. van Dam, J. Vuorenmaa, and C. D. Evans, “Cleaner air reveals growing influence of climate on dissolved organic carbon trends in northern headwaters,” Environ. Res. Lett. 16, 104009 (2021).

    Article  Google Scholar 

  15. K. K. Edelshtein, Hydrology of Continents (Yurait, Moscow, 2023) [in Russian].

    Google Scholar 

  16. V. V. Ermakov, “A. R. Vinogradov’s concept of biogeochemical provinces and its development,” Geochem. Int. 55 (10), 872–886 (2017).

    Article  Google Scholar 

  17. V. V. Ermakov and Y. V. Kovalsky, “Living matter of the biosphere: mass and chemical elemental composition,” Geochem. Int. 56 (10), 969–981 (2018).

    Article  Google Scholar 

  18. European Commission. Directive 2013/39/EC Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. 2013/39/EC; 2013.

  19. A. P. Fersman, Geochemistry (ONTI–KhIMTEORET, Leningrad, 1934), Vol. 2 [in Russian].

  20. N. A. Gashkina, T. I. Moiseenko, L. A. Shuman, and I. M. Koroleva, “Biological responses of whitefish (Coregonus lavaretus L.) to reduced toxic impact: Metal accumulation, haematological, immunological, and histopathological alterations,” Ecotoxicol. Environ. Safety 239, 113659 (2022). https://doi.org/10.1016/j.ecoenv.2022.113659

    Article  Google Scholar 

  21. A. G. Georgiadi, N. I. Koronkevich, E. A. Barabanova, E. A. Kashutina, and I. P. Milyukova, “Contribution of climatic and anthropogenic factors to changes in the flow of large rivers of the Russian Plain and Siberia,” Dokl. Earth Sci. 488 (2), 1211–1216 (2019).

    Article  Google Scholar 

  22. T. E. Graedel, C. M. Benkovitz, W. C. Keene, D. S. Lee, and G. Marland, “Global emission inventories of acid-related compounds,” Water, Air and Soil Pollut. 85, 25–36 (1995).

    Article  Google Scholar 

  23. G. Grosse, S. Goetz, A. D. McGuire, V. E. Romanovsky, and E. A. Schuur, “Changing permafrost in a warming world and feedbacks to the Earth system,” Environ. Res. Lett. 11, 040201 (2016).

    Article  Google Scholar 

  24. N. Gruber and J. N. Galloway, “An Earth-system perspective of the global nitrogen cycle,” Nature 451, 293–296 (2008).

    Article  Google Scholar 

  25. B. Kvaeven, M. J. Ulstein, and B. L. Skjelkvåle, “ICP Waters—An international program for surface water monitoring,” Water Air Soil Pollut. 130, 775–780 (2001).

    Article  Google Scholar 

  26. G. Malkova, D. Drozdov, A. Vasiliev, A. Gravis, G. Kraev, Y. Korostelev, K. Nikitin, P. Orekhov, O. Ponomareva, V. Romanovsky, et al., “Spatial and temporal variability of permafrost in the western part of the Russian Arctic,” Energies 15, 2311 (2022). https://doi.org/10.3390/en15072311

    Article  Google Scholar 

  27. K. M. Meingast, E. Kane, A. A. Coble, A. M. Marcarelli, and D. Toczydlowski, “Climate, snowmelt dynamics and atmospheric deposition interact to control dissolved organic carbon export from a northern forest stream over 26 years,” Environ. Res. Lett. 15, 104034 (2020).

    Article  Google Scholar 

  28. Mineral Resources of the World. A Statistical Reference Book (Aerogeologiya—Mineral, Moscow, 2002) [in Russian].

  29. T. I. Moiseenko, “Concept of ecosystem “health” in assessment of water quality,” Ekologiya 6, 411–419 (2008).

    Google Scholar 

  30. T. I. Moiseenko, “Evolution of biogeochemical cycles under anthropogenic loads: limits impacts,” Geochem. Int. 55 (10), 841–860 (2017).

    Article  Google Scholar 

  31. T. I. Moiseenko, “Bioavailability and ecotoxicity of metals in aquatic systems: critical contamination levels,” Geochem. Int. 57 (7), 737–750 (2019).

    Article  Google Scholar 

  32. T. Moiseenko and A. Sharov, “Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review,” Geosciences 9 (12), 492 (2019). https://doi.org/10.3390/geosciences9120492

    Article  Google Scholar 

  33. T. I. Moiseenko, B. L. Skjelkvåle, N. A. Gashkina, A. D. Shalabodov, and V. Yu. Khoroshavin, “Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: Effects of air pollution and climate change,” Appl. Geochem. 28, 69–79 (2013).

    Article  Google Scholar 

  34. T. I. Moiseenko, M. I. Dinu, M. M. Bazova, and H. A. de Wit, “Long-term changes in the water chemistry of subarctic lakes as a response to reduction of air pollution: case study in the Kola North, Russia,” Water, Air, & Soil Pollution 226 (98), 1–12 (2015).

    Article  Google Scholar 

  35. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, V. Jones, V. Y. Khoroshavin, and T. A. Kremleva, “Present status of water chemistry and acidification under nonpoint sources of pollution across European Russia and West Siberia,” Environ. Res. Lett. 13, 105007 (2018).

    Article  Google Scholar 

  36. T. I. Moiseenko, M. I. Dinu, N. A. Gashkina, and T. A. Kremleva, “Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia,” Environ. Res. Lett. 14, 065010 (2019). https://doi.org/10.1088/1748-9326/ab17ea

    Article  Google Scholar 

  37. T. I. Moiseenko, N. A. Gashkina, and M. I. Dinu, “Metal bioavailability in northern low-salinity water: Case study of lakes in the Kola region, Russia. Case study of lakes in the Kola region,” Environ. Res. Lett. 15, 095005 (2020). https://doi.org/10.1088/1748-9326/ab9b40

    Article  Google Scholar 

  38. T. I. Moiseenko, M. M. Bazova, and N. A. Gashkina, “Development of lake from acidification to eutrophication in the Arctic region under reduced acid deposition and climate warming,” Water 14, 3467 (2022). https://doi.org/10.3390/w14213467

    Article  Google Scholar 

  39. D. T. Monteith, J. L. Stoddard, C. D. Evans, Wit H. A. de, M. Forsius, T. Hogasen, A. Wilander, B. L. Skjelkvale, D. S. Jeffries, J. Vuorenmaa, B. Keller, J. Vesely, and J. Kopacek, “Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry,” Nature 450, 537–539 (2007).

    Article  Google Scholar 

  40. J. W. Moore and S. Ramamurthy, “Heavy metals in natural waters,” in Monitoring and Impact Assessment (Springer, 1984).

    Google Scholar 

  41. M. C. Newman and W. H. Clements, “Aquatic toxicology: concepts, practice, new directions,” in General, Applied and Systems Toxicology (Wiley, 2009). https://doi.org/10.1002/9780470744307.gat092

    Book  Google Scholar 

  42. A. M. Nikanorov, Fundamental and Applied Problem of Hydrochemistry and Hydroecology (Yuzhn. Federal. Univ., Rostov-on-Don, 2015) [in Russian].

    Google Scholar 

  43. A List of Fishery Standards of Maximum Permissible Concentrations (MPC) and Roughly Non-Hazardous Levels of Impact (RNLI) of Toxic Matters for aqueous objects of fishery Significance (VNIRO, Moscow, 1999) [in Russian].

  44. W. Rockström, S. K. Noone, Å. Persson, III, F. S. Chapin, E. F. Lambin, T. M. Lenton, and M. Scheffer, “A safe operating space for humanity,” Nature 461, 472–475 (2009).

    Article  Google Scholar 

  45. I. I. Rudneva, I. N. Zalevskaya, V. G. Shaida, G. N. Memetlaeva, and A. V. Scherba, “Biogenic migration of nitrogen and phosphorus in Crimean hypersaline lakes: a seasonal aspect,” Geochem. Int. 58 (10), 1123–1134 (2020).

    Article  Google Scholar 

  46. I. I. Rudneva, P. V. Gaisky, V. G. Shaida, and O. V. Shaida, “Assessing climate and human activity effects on hypersaline lake ecosystem: case study of Saki Lake, Crimea,” Water 15, 456 (2023). https://doi.org/10.3390/w15030456

    Article  Google Scholar 

  47. J. L. Stoddard, Sickle J. Van, A. T. Herlihy, J. Brahney, S. Paulsen, D. V. Peck, et al., “Continental-scale increase in lake and stream phosphorus: Are oligotrophic systems disappearing in the United States?,” Environ Sci Technol. 50, 3409–3415 (2016).

    Article  Google Scholar 

  48. K. E. Strock, N. Theodore, W. G. Gawley, A. C. Ellsworth, and J. E. Saros, “Increasing dissolved organic carbon concentrations in northern boreal lakes: implications for lake water transparency and thermal structure,” J. Geophys. Res. Biogeosci. 122, 1022–35 (2017).

    Article  Google Scholar 

  49. K. Tussupova, A. P. Hjorth, and M. Morave, “Drying lakes: A review on the applied restoration strategies and health conditions in contiguous areas,” Water 12, 749 (2020).

    Article  Google Scholar 

  50. EPA. National Recommended Water Quality Criteria. Report 4304T. Office of Water U.S. and of Science and Technology (EPA/600/4-91/002). Office (EPA/600/4–91/002) (Springfield, 2007).

  51. World Water Development Report: Valuing Water UN, 2021. https://www.unwater.org/publications/un-world-water-development-report-2021

  52. K. Väänänena, M. T. Leppänen, X. Chen, and J. Akkanenaa, “Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management,” Ecotoxicol Environ Saf. 147, 430–446 (2018).

    Article  Google Scholar 

  53. P. Vasseur, J. -F. Masfaraud, and C. Blaise, “Ecotoxicology, revisiting its pioneers,” Environ Sci. Pollut. Res. Int. 28 (4), 3852–3857 (2021). Doi: https://doi.org/10.1007/s11356-020-11236-7

    Article  Google Scholar 

  54. V. I. Vernadsky, Scientific Idea as Planetary Phenomenon (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  55. V. I. Vernadsky, History of Natural Waters, Ed. by S. L. Shvartsev, F. T. Yanshina (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  56. Water Security under Climate Change, Ed. by A. K. Biswas and C. Tortajada (Springer Nature, Singapore 2022). https://doi.org/10.1007/978-981-16-5493-0

  57. G. Xiang, “Permafrost degradation and methane: low risk of biogeochemical climate–warming feedback,” Environ. Res. Lett. 8, 035014 (2013).

    Article  Google Scholar 

  58. X. Zhang, E. A. Davidson, T. Zou, L. Lassaletta, Z. Quan, T. Li, and W. Zhang, “Quantifying nutrient budgets for sustainable nutrient management,” Global Biogeochem. Cycles. 34, e2018GB006060 (2020). https://doi.org/10.1029/2018GB006060

Download references

ACKNOWLEDGEMENTS

The author thanks the scientific editor Prof. V.V. Ermakov and the editor in chief of Geochemistry International Acad. Yu.A. Kostitsyn for convening the special issue of the journal devoted to the development of V.I. Vernadsky’s ideas in the modern world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Moiseenko.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseenko, T.I. Development of V.I. Vernadsky’s Ideas about Natural Waters: Biogeochemical Processes and Water Quality. Geochem. Int. 61, 1015–1025 (2023). https://doi.org/10.1134/S0016702923100087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923100087

Keywords:

Navigation