Skip to main content
Log in

Hydrocarbons in the Littoral Sediments and March Soils of the Southwestern Coast of the Barents Sea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The genesis, facies conditions of sedimentation, degree of organic matter transformation in the bottom sediments and march soils of the southwestern coast of the Barents Sea are characterized based on results of a GC-MS study of the composition and distribution of hydrocarbons (n-alkanes, isoprenoids, steranes, hopanes, polycyclic aromatic hydrocarbons (PAHs), and their alkyl homologues). The effects of the toxicity levels of polyarenes on the biota inhabiting the tidal zones of the coast was assessed, and areas of elevated anthropogenic load were identified (littoral of the eastern Tana Fjord, the village of Kiberg, Abram Cape, the village of Mishukovo, the mouth of the Kulonga River, the apex part of Yarnyshnaya Bay, and Oscar Bay), indicating an unfavorable ecological state of the tidal zones of the Barents Sea coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. A. Aibulatov, Activity of Russia in the Coastal Sea Zone and Ecological Problems (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  2. R. Alexander, S. J. Fisher, and R. I. Kagi, “2, 3-Dimethylbiphenyl: kinetics of its cyclisation reaction and effects of maturation upon its relative concentration in sediments,” Org. Geochem. 13, 833–837 (1988).

    Article  Google Scholar 

  3. A. Bambulyak, B. Frantzen, and R. Rautio, Oil Transport from the Russian part of the Barents Region. Status Report (The Norwegian Barents Secretariat and Akvaplan–niva, 2015).

    Google Scholar 

  4. O. K. Bazhenova, Yu. K. Burlin, B. A. Sokolov, and V. E. Khain, Petroleum Geology and Geochemistry (MSU, Moscow, 2000).

    Google Scholar 

  5. S. Boitsov, H. K. B. Jensen, and J. Klungsøyr, “Natural background and anthropogenic inputs of polycyclic aromatic hydrocarbons (PAH) in sediments of South-Western Barents Sea,” Mar. Environ. Res. 68 (5), 236–245 (2009).

    Article  Google Scholar 

  6. S. Boitsov, J. Klungsøyr, and H. Jensen, “Background concentrations of polycyclic aromatic hydrocarbons (PAHs) in deep core sediments from the Norwegian Sea and the Barents Sea: a proposed update of the OSPAR commission background values for these sea areas,” Chemosph. 251, 1–12 (2020).

    Article  Google Scholar 

  7. I. Bouloubassi and A. Saliot, “Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH),” Oceanol. Acta 16, 145–161 (1993b).

    Google Scholar 

  8. J. Connan and A. Cassou, “Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation level,” Geochim. Cosmochim. Acta. 44 (1), 10–23 (1980).

    Article  Google Scholar 

  9. S. Dahle, V. Savinov, V. Petrova, J. Klungsøyr, T. Savinova, G. Batova, and A. Kursheva, “Polycyclic aromatic hydrocarbons (PAHs) in Norwegian and Russian Arctic marine sediments: concentrations, geographical distribution and sources,” Norw. J. Geol. 86 (1), 41–50 (2006).

  10. S. Dahle, V. Savinov, J. Klungsøyr, S. Boitsov, N. Plotitsyna, A. Zhilin, T. Savinova, and V. Petrova, “Polyaromatic hydrocarbons (PAHs) in the Barents Sea sediments: small changes over the recent 10 years,” Mar. Biol. Res. 5, 101–108 (2009).

  11. A. I. Danyushevskaya, V. I. Petrova, D. S. Yashin, G. I. Batova, and V. E. Artemev, Organic Matter of Bottom Deposits of the World Ocean Polar Zones (Nedra, Leningrad, 1990) [in Russian].

    Google Scholar 

  12. G. Eglinton and M. T.J. Murphy, Organic Geochemistry (Springer–Verlag, Berlin–Heidelberg–New York, 1969).

    Book  Google Scholar 

  13. P. Garrigues, R. De Sury, M. L. Angelin, J. Bellocq, J. L. Oudin, and M. Ewald, “Relation of the methylated aromatic hydrocarbon distribution pattern to the maturity of organic matter in ancient sediments from the Mahakam delta,” Geochim. Cosmochim. Acta 52, 375–384 (1988).

    Article  Google Scholar 

  14. S. C. George, H. Volk, A. Dutkiewicz, J. Ridley, and R. Buick, “Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years,” Geochim. Cosmochim. Acta 72, 844–870 (2008).

    Article  Google Scholar 

  15. G. N. Gordadze, Hydrocarbons in Oil Geochemistry. Theory and Practice (Ross. Gos. Univ. Nefti Gaza im. I.M. Gubkina, 2015) [in Russian].

  16. M. Honda and N. Suzuki, “Toxicities of polycyclic aromatic hydrocarbons for aquatic animals,” J Environ. Res. Public Health. 17 (4), 1363 (2020).

    Google Scholar 

  17. H. M.Z. Hossain, Y. Sampei, Q. H. Hossain, B. P. Roser, and M. D. Sultan-Ul-Islam, “Characterization of alkyl phenanthrene distributions in Permian Gondwana coals and coaly shales from the Barapukuria Basin, NW Bangladesh,” Org. Geochem. 29, 17–28 (2013).

    Google Scholar 

  18. V. A. Kashirtsev, Organic Geochemistry of Naphthides of the Eastern Siberian Platform (SO RAS, Yakutsk, 2003) [in Russian].

    Google Scholar 

  19. L. H. Keith, “The source of U.S. EPA’s sixteen PAH priority pollutants,” Polycycl. Aromat. Compd. 35, 147–160 (2015).

    Article  Google Scholar 

  20. N. M. Kiryukhina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy “(Mosk. Gos. Univ. im. M.V. Lomonosova, Moscow, 2013) [in Russian].

  21. E. A. Kostyreva, V. A. Kashirtsev, V. I. Moskvin, S. V. Bukin, and A. V. Khabuev, “Organic matter of bottom sediments from the zone hydrothermal activity (Frolikha Bay, North Baykal),” Proc. 15 th International Congress “Interexpo-GEO-Siberia (SSUGT, Novosibirsk, 2019), Vol. 2, pp. 81–86 [in Russian].

  22. A. Yu. Lein, P. N. Makkaveev, A. S. Savvichev, M. D. Kravchishina, N. A. Belyaev, O. M. Dara, M. S. Ponyaev, E. E. Zakharova, A. G. Rozanov, M. V. Ivanov, and M. V. Flint, “Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011,” Okeanology 53 (5), 570–606 (2013).

    Article  Google Scholar 

  23. E. R. Long, D. D. MacDonald, S. L. Smith, and F. D. Calder, “Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments,” Environ. Manag. 19 (1), 81–97 (1995).

    Article  Google Scholar 

  24. D. D. MacDonald, C. G. Ingersoll, D. E. Smorong, and R. A. Lindskoog, Development and Applications of Sediment Quality Criteria for Managing Contaminated Sediment in British Columbia (MacDonald Environ. Scienc. Ltd. &US Geological Survey, 2003).

  25. W. Meyer, T. -B. Seiler, A. Christ, R. Redelstein, W. Püttmann, H. Hollert, and C. Achten, “Mutagenicity, dioxin-like activity and bioaccumulation of alkylated picene and chrysene derivatives in a German lignite,” Sci. Total Environ. 497–498, 634–641 (2014).

    Article  Google Scholar 

  26. I. Morgunova, P. Semenov, A. Kursheva, I. Litvinenko, S. Malyshev, S. Bukin, O. Khlystov, O. Pavlova, T. Zemskaya, and A. Krylov, “Molecular indicators of sources and biodegradation of organic matter in sediments of fluid discharge zones of Lake Baikal,” Geosciences 12 (2), 72 (2022).

    Article  Google Scholar 

  27. I. P. Morgunova, A. V. Kursheva, V. I. Petrova, I. V. Litvinenko, G. I. Batova, P. E. Renaud, A. L. Maltseva, and A. I. Granovitch, “Natural and anthropogenic organic matter inputs to intertidal deposits of the urbanized Arctic region: a multi–proxy approach,” Mar. Chem. 234 (104001) (2021).

  28. I. P. Morgunova, V. I. Petrova, I. V. Litvinenko, A. V. Kursheva, G. I. Batova, P. E. Renaud, and A. I. Granovitch, “Hydrocarbon molecular markers in the Holocene bottom sediments of the Barents Sea as indicators of natural and anthropogenic impacts,” Mar. Pollut. Bull. 149, 1–12 (2019).

    Article  Google Scholar 

  29. I. A. Nemirovskaya, Oil in Ocean (Contamination and Natural Fluxes) (Nauchnyi mir, Moscow, 2013) [in Russian].

  30. C. T. Nisbet and P. K. LaGoy, “Toxic equivalency factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regulatory Toxic,” Pharmacol. 16, 290–300 (1992).

    Google Scholar 

  31. M. Nishimura and E. W. Baker, “Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments,” Geochim. Cosmochim. Acta 50, 299–305 (1986).

    Article  Google Scholar 

  32. D. S. Page, P. D. Boehm, and J. M. Neff, “Shoreline type and subsurface oil persistence in the Exxon Valdez spill zone of Prince William Sound, Alaska,” In: Proceedings of the 31st AMOP Technical Seminar on Environmental Contamination and Response (Environment Canada, 2008), pp. 545–564.

  33. D. G. Panov, “Geological structure of the Barents Sea in relation with morphology of its coasts,” Uch. Zap. Mosk. Gos. Univ. Ser. Geograf. 48, 75–112 (1940).

    Google Scholar 

  34. S. A. Patin, Oil and Ecology of Continental Shelf. Volume 2. Ecological Consequences, Monitoring, and Regulation during Exploration of Hydrocarbon Resources (VNIRO, Moscow, 2017) [in Russian].

  35. K. E. Peters, C. C. Walters, and J. M. Moldowan, The Biomarker Guide: Vol. 2. Biomarkers and Isotopes in Petroleum Systems and Earth History (Cambridge University Press, Cambridge, 2005).

  36. A. A. Petrov, Oil Hydrocarbons (Nauka, Moscow, 1984).

    Google Scholar 

  37. A. A. Petrov, “Biomarkers and geochemical conditions of oil formation in Russia,” Geol. Nefti Gaza 6, 13–19 (1994a).

    Google Scholar 

  38. V. I. Petrova, G. I. Batova, and A. V. Kursheva, “Organic-geochemical studies of bottom sediments in the oil production region: evidence from the shelf zone of Kolguev I., Pechora Sea),” Probl. Arktiki Antarktiki 2 (82), 60–67 (2009).

    Google Scholar 

  39. V. I. Petrova, G. I. Batova, A. V. Kursheva, I. V. Litvinenko, and I. P. Morgunova, “Molecular geochemistry of organic matter in the Triassic rocks of northeastern Barents Sea: influence of tectonic and magmatic processes,” Russ. Geol. Geophys. 58 (3–4), 398–409 (2017).

    Article  Google Scholar 

  40. M. Radke, D. H. Welte, and H. Willsch, “Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter,” Geochim. Cosmochim. Acta. 46, 1–10 (1982a).

    Article  Google Scholar 

  41. M. M. Rhead and S. A. Hardy, “The sources of polycyclic aromatic compounds in diesel engine emissions,” Fuel. 82, 385–393 (2003).

    Article  Google Scholar 

  42. S. Richter-Brockmann and C. Achten, “Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples including dibenzopyrenes, 7H-benzo[c]fluorene, 5-methylchrysene and 1-methylpyrene,” Chemosphere 200, 495–503 (2018).

    Article  Google Scholar 

  43. E. A. Romankevich, Geochemistry of Organic Matter in Ocean (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  44. F. Ya. Rovinskii, T. A. Teplitskaya, and A. D. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  45. V. Samburova, B. Zielinska, and A. Khlystov, “Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 5, 1–16 (2017).

    Article  Google Scholar 

  46. V. M. Savinov, T. N. Savinova, G. G. Matishov, S. Dahle, and K. Næs, “Polycyclic aromatic hydrocarbons (pahs) and organochlorines (ocs) in bottom sediments of the guba Pechenga, Barents Sea, Russia,” Sci. Total Environm. 306 (1–3), 39–56 (2003).

    Article  Google Scholar 

  47. D. A. Sosnin and Yu. F. Kuranov, Murmansk Marine Transport Cluster Today and in Prospects. Kola Bay and Oil (Biota, and Map of the Contamination Vulnerability), Ed. by A. A. Shavykin (Renome, St. Petersburg, 2018) [in Russian].

    Google Scholar 

  48. S. A. Stout, “Aliphatic and aromatic triterpenoid hydrocarbons in a Tertiary angiospermous lignite,” Org. Geochem. 18, 51–66 (1992).

    Article  Google Scholar 

  49. Y. Sun, S. Qin, C. Zhao, Y. Li, H. Yu, and Y. Zhang, “Organic geochemistry of semianthracite from the Gequan mine, Xingtai coalfield, China,” CoalGeol. 116–117, 281–292 (2013).

    Google Scholar 

  50. G. A. Tarasov and V. V. Alekseev, “Sedimentation on shelf of the Southern Barents Sea,” Geology and Geomorphology of Shelves and Continental Slopes (Nauka, 1985), pp. 112–117.

    Google Scholar 

  51. M. Tobiszewski and J. Namiesnik, “PAH diagnostic ratios for the identification of pollution emission sources,” Environm. Pollut. 162, 110–119 (2012).

    Article  Google Scholar 

  52. Predicting Toxicity to Amphipods from Sediment Chemistry (National Center for Environmental Assessment, Washington, 2005).

  53. V. A. Uspenskii, Introduction to the Oil Geochemistry (Nedra, Leningrad, 1970) [in Russian].

    Google Scholar 

  54. N. B. Vassoevich, “Formation of oil in terrigenous deposits: evidemce from the Chokrak—Karagan layers of Tersky foredeep,” in Problems of Oil Formation (Gostoptekhizdat, VNIGRI, 2958), pp. 128, 9–22 (1958).

  55. N. B. Vassoevich, Nature of Organic Matter of the Modern and Ancient Sediments (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  56. H. Xu, S. C. George, and D. Hou, “Algal-derived polycyclic aromatic hydrocarbons in Paleogene lacustrine sediments from the Dongying depression, Bohai Bay basin, China,” Mar. Petrol. Geol. 102, 402–425 (2019).

    Article  Google Scholar 

  57. M. B. Yunker, R. W. MacDonald, P. S. Ross, S. C. Johannessen, and N. Dangerfield, “Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada,” Org. Geochem. 89–90, 80–116 (2015).

    Article  Google Scholar 

  58. M. B. Yunker, F. A. McLaughlin, B. R. Fowler, and M. G. Fowler, “Source apportionment of the hydrocarbon background in sediment cores from Hecate Strait, a pristine sea on the west coast of British Columbia, Canada,” Org. Geochem. 76, 235–258 (2014).

    Article  Google Scholar 

  59. A. Yu. Zhilin and N. F. Plotitsina, “Composition, sources, and toxicological potential of PAH in the bottom sediments of Kola Bay, Barents Sea,” Izv. TINRO 156, 247–253 (2009).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank researchers at the Department of the Invertebrate Zoology at the St. Petersburg State University Prof. A.I. Granovich, Dr. A.L.Maltseva, and E.A. Golikova for organizing and carrying out the field work and for valuable proposals and suggestions during the preparation of the manuscript. We are grateful to the scientific editor M.A. Levitan and reviewers for valuable comments and recommendations that we took into account when preparing the manuscript.

Funding

This study was financially supported by Grant 18-54-20001 from the Russian Science Foundation and Grant NFR #280724 of the Research Council of Norway, under the joint project “Environmental monitoring of Arctic coastal ecosystems: Sensitivity to petroleum pollution (Arctic EcoSens)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kursheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kursheva, A.V., Morgunova, I.P., Petrova, V.I. et al. Hydrocarbons in the Littoral Sediments and March Soils of the Southwestern Coast of the Barents Sea. Geochem. Int. 61, 972–988 (2023). https://doi.org/10.1134/S0016702923090070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923090070

Keywords:

Navigation