Skip to main content
Log in

Effect of Elemental Sulfur (S8) on Carbon Isotope Analysis of n-Alkanes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Stable carbon isotopes of long-chain n-alkanes in lake sediments have been used for reconstructing past environmental changes. Gas chromatography isotope ratio mass spectrometry coupled to a combustion unit is the commonly applied technique for compound-specific carbon isotope analysis. This paper shows that sulfur in the lacustrine sediment can cause severe interference during the mass spectrometric measurement, leading to significant biases in δ13C of n-alkane. The δ13C deviation could be resulted from additional 12C33S+, 13C32S+ at mass-to-charge ratio (m/z) 45, and 12C34S+, H2C32S+at m/z 46, respectively. Such elemental sulphur interference can be eliminated by the activated copper in the pretreatment procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. T. Andersson, and U. Holwitt, “An advantageous reagent for the removal of elemental sulfur from environmental samples,”. Fresenius’ J. Anal. Chem. 350, 474–480 (1994).

    Article  Google Scholar 

  2. M. Blumer, “Removal of elemental sulfur from hydrocarbon fractions,” Anal. Chem. 29, 1039–1041 (1957).

    Article  Google Scholar 

  3. I. S. Castañeda and S. Schouten, “A review of molecular organic proxies for examining modern and ancient lacustrine environments,” Quat. Sci. Rev. 30, 2851–2891 (2011).

    Article  Google Scholar 

  4. I. S. Castañeda, J. P. Werne, T. C. Johnson, and T. R. Filley, “Late Quaternary vegetation history of southeast Africa: The molecular isotopic record from Lake Malawi,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 275, 100–112 (2009).

    Article  Google Scholar 

  5. J. A. Collins, E. Schefuß, S. Mulitza, M. Prange, M. Werner, T. Tharammal, A. Paul, and G. Wefer, “Estimating the hydrogen isotopic composition of past precipitation using leaf-waxes from western Africa,” Quat. Sci. Rev. 65, 88–101 (2013).

    Article  Google Scholar 

  6. J. W. Collister, G. Rieley, B. Stern, G. Eglinton, and B. Fry, “Compound-specific δ13C of leaf lipids from plants with differing carbon dioxide metabolisms,” Org. Geochem. 21, 617–627 (1994).

    Article  Google Scholar 

  7. T. B. Coplen, J. K. Böhlke, P. D. Bièvre, T. Ding, N. E. Holden, J. A. Hopple, H. R. Krouse, A. Lamberty, H. S. Peiser, K. Revesz, S. E. Rieder, K. J. R. Rosman, E. Roth, P. D. P. Taylor, R. D. Vocke, Jr., and Y. K. Xiao, “Isotope-abundance variations of selected elements (IUPAC Technical Report),” Pure Appl. Chem. 74, 1987–2017 (2002).

    Article  Google Scholar 

  8. H. Craig, “Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide,” Geochim. Cosmochim. Acta. 12, 133–149 (1957).

    Article  Google Scholar 

  9. H. Craig and C. D. Keeling, “The effects of atmospheric NO2 on the measured isotopic composition of atmospheric CO2,” Geochim. Cosmochim. Acta. 27, 549–551 (1963).

    Article  Google Scholar 

  10. P. A. Cranwell, “Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine 554 sediment,” Org. Geochem. 3, 79–89 (1981).

    Article  Google Scholar 

  11. A. F. Diefendorf and E. J. Freimuth, “Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review,” Org. Geochem. 103, 1–21 (2017).

    Article  Google Scholar 

  12. S. Doddipatla, C. He, R. I. Kaiser, Y. Luo, R. Sun, G. R. Galimova, A. M. Mebel, and T. J. Millar, “A chemical dynamics study on the gas phase formation of thioformaldehyde (H2CS) and its thiohydroxycarbene isomer (HCSH),” Proc. Natl. Acad. Sci. U. S. A. 117, 22712–22719 (2020).

    Article  Google Scholar 

  13. B. Hattendorf and D. Günther, “Strategies for method development for an inductively coupled plasma mass spectrometer with bandpass reaction cell. Approaches with different reaction gases for the determination of selenium,” Spectrochim. Acta, Part B 58, 1–13 (2003).

    Article  Google Scholar 

  14. D. Hausler, “Trace element analysis of organic solutions using inductively coupled plasma-mass spectrometry,” Spectrochim. Acta. 428, 63–73 (1987).

    Article  Google Scholar 

  15. Y. Huang, G. Eglinton, P. Ineson, P. M. Latter, R. Bol, D. D. Harkenss, “Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experiment with Cufluna vulgaris,” Org. Geochem. 26, 497–501 (1997).

    Article  Google Scholar 

  16. M. Jin, Y. Xia, T. Lei, S. Ma, J. Qiu, R. Zhang, “Note on sulfur removal with metallic copper,” Geochem. Int. 45, 620–623 (2007).

    Article  Google Scholar 

  17. J. Kaiser, “Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic ‘absolute’ carbon and oxygen isotope ratios,” Geochim. Cosmochim. Acta. 72, 1312–1334 (2008).

    Article  Google Scholar 

  18. D. B. Kemp and A. L. Coe, “A nonmarine record of eccentricity forcing through the Upper Triassic of southwest England and its correlation with the Newark Basin astronomically calibrated geomagnetic polarity time scale from North America,” Geology 35, 991 (2009).

    Article  Google Scholar 

  19. S. Killops and V. Killops, “Production, preservation and degradation of organic matter,” in Introduction to Organic Geochemistry, Ed. by S. Killops and V. Killops (Blackwell, 2013), pp. 71–116.

    Google Scholar 

  20. M. Kohler and J. A. Leary, “Gas phase reactions of doubly charged alkaline earth and transition metal(II)-ligand complexes generated by electrospray ionization,” Int. J. Mass Spectrom. Ion Processes. 162, 17–34 (1997).

    Article  Google Scholar 

  21. H. Kylin, S. Atuma, L. Hovander, and S. Jensen, “Elemental sulphur (S8) in higher plants - biogenie or anthropogenic origin?,” Experientia 50, 80–85 (1994).

    Article  Google Scholar 

  22. G. A. Logan, M. C. Hinman, M. R. Walter, and R. E. Summons, “Biogeochemistry of the 1640 Ma McArthur River (HYC) lead-zinc ore and host sediments, Northern Territory, Australia,” Geochim. Cosmochim. Acta. 65, 2317–2336 (2001).

    Article  Google Scholar 

  23. W. Meier-Augenstein, “GC and IRMS technology for 13C and 15N analysis on organic compounds and related gases,” in Handbook of Stable Isotope Analytical Techniques (Elsevier, Amsterdam, 2004), pp. 153–176.

    Google Scholar 

  24. W. Meier-Augenstein, H. F. Kemp, and C. M. Lock, “N2: a potential pitfall for bulk 2H isotope analysis of explosives and other nitrogen-rich compounds by continuous-flow isotope-ratio mass spectrometry,” Rapid Commun. Mass Spectrom. 23, 2011–2016 (2009).

    Article  Google Scholar 

  25. M. Morosini, J. Schreitmueller, U. Reuter, and K. Ballschmiter, “Correlation between C-6/C-14 chlorinated hydrocarbons levels in the vegetation and in the boundary layer of the troposphere,” Environ. Sci. Technol. 27, 1517–1523 (1993).

    Article  Google Scholar 

  26. D. Pick, M. Leiterer, and J. W. Einax, “Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS,” Microchem. J. 95, 315–319 (2010).

    Article  Google Scholar 

  27. S. Reinnicke, D. Juchelka, S. Steinbeiss, A. Meyer, A. Hilkert, and M. Elsner, “Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization,” Rapid Commun. Mass Spectrom. 26, 1053–1060 (2012).

    Article  Google Scholar 

  28. G. Rieley, R. J. Collier, D. M. Jones, G. Eglinton, P. A. Eakin, and A. E. Fallick, “Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds,” Nature 352, 425–427 (1991).

    Article  Google Scholar 

  29. D. Sachse, J. Radke, and G. Gleixner, “δD values of individual n-alkanes from terrestrial plants along a climatic gradient—Implications for the sedimentary biomarker record,” Org. Geochem. 37, 469–483 (2006).

    Article  Google Scholar 

  30. J. Santrock, S. A. Studley, and J. M. Hayes, “Isotopic analyses based on the mass spectrum of carbon dioxide,” Anal. Chem. 57, 1444–1448 (1985).

    Article  Google Scholar 

  31. E. Schefuß, V. Ratmeyer, J. B. W. Stuut, J. H. F. Jansen, and J. S. Sinninghe Damsté, “Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic,” Geochim. Cosmochim. Acta. 67, 1757–1767 (2003).

    Article  Google Scholar 

  32. J. Schmitt, B. Seth, M. Bock, C. Veen, L. Möller, C. J. Sapart, M. Prokopiou, T. Sowers, T. Röckmann, and H. Fischer, “On the interference of 86Kr2+ during carbon isotope analysis of atmospheric methane using continuous flow combustion - isotope ratio mass spectrometry,” Atmos Meas Tech. 6, 1409–1460 (2013).

    Article  Google Scholar 

  33. S. Schouten, M. Woltering, W.I.C. Rijpstra, A. Sluijs, H. Brinkhuis, J.S. Sinninghe Damsté, “The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: Differential fractionation of angiosperms and conifers in the Arctic,” Earth Planet. Sci. Lett. 258, 581–592 (2007).

    Article  Google Scholar 

  34. V. F. Schwab, Y. Garcin, D. Sachse, G. Todou, O. Séné, J. M. Onana, G. Achoundong, and G. Gleixner, “Effect of aridity on δ13C and δD values of C3 plant- and C4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa),” Org. Geochem. 78, 99–109 (2015).

    Article  Google Scholar 

  35. J. P. Severinghaus, A. Grachev, B. Luz, and N. Caillon, “A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica,” Geochim. Cosmochim. Acta. 67, 325–343 (2003).

    Article  Google Scholar 

  36. J. S. Sinninghe Damsté, D. Verschuren, J. Ossebaar, J. Blokker, R. Houten, M. T. J. Meer, B. Plessen, and S. Schouten, “A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes,” Earth Planet. Sci. Lett. 302, 236–246 (2011).

    Article  Google Scholar 

  37. F. Smith, S. Wing, and K. Freeman, “Magnitude of the carbon isotope excursion at the Paleocene–Eocene thermal maximum: the role of plant community change,” Earth Planet. Sci. Lett. 262, 50–65 (2007).

    Article  Google Scholar 

  38. R. E. Summons, P. Metzger, C. Largeau, A. P. Murray, and J. M. Hope, “Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and crude oils,” Org. Geochem. 33, 99–109 (2002).

    Article  Google Scholar 

  39. J. E. Tierney, J. M. Russell, J. S. Sinninghe Damsté, Y. Huang, and D. Verschuren, “Late Quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary,” Quat. Sci. Rev. 30, 798–807 (2011).

    Article  Google Scholar 

  40. B. J. Tipple and M. Pagani, “A 35Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics,” Earth Planet. Sci. Lett. 299, 250–262 (2010).

    Article  Google Scholar 

  41. V. S. Wadi, K. Halique, and S. M. Alhassan, “Polypropylene–elemental sulfur (S8) composites: effect of sulfur on morphological, thermal, and mechanical properties,” Ind. Eng. Chem. Res. 59, 13079–13087 (2020).

    Article  Google Scholar 

  42. J. Wu, Y. Lin, J. Lu, and C. Wilson, “Copper clean-up procedure for ultrasonic extraction and analysis of pyrethroid and phenylpyrazole pesticides in sediments by gas chromatography-electron capture detection,” Sci. Total Environ. 409, 3482–3491 (2011).

    Article  Google Scholar 

  43. E. D. Young, A. Galy, and H. Nagahara, “Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance,” Geochim. Cosmochim. Acta. 66, 1095–1104 (2002).

    Article  Google Scholar 

  44. D. Zhu, Y. Huang, J. Cao, S. C. Lee, M. Chen, and Z. Shen, “Cobalt nanoparticles encapsulated in porous nitrogen-doped carbon: Oxygen activation and efficient catalytic removal of formaldehyde at room temperature,” Appl. Catal. B. 258, 117981 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the National Natural Science Foundation of China (41888101 and 41672168), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA2007020202 and XDA2007020205), and the Beijing Geological survey project (11000022T000000440137 and 11000022T000000440175). In addition, we are very grateful to the associated editor Prof. Mikhail Spasennykh and two anonymous reviewers for their valuable comments on our article, as well as the time and effort of Dr. Tatiana Shishkina in editing and contacting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Cao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengmeng Cao, Cao, Y., Sun, J. et al. Effect of Elemental Sulfur (S8) on Carbon Isotope Analysis of n-Alkanes. Geochem. Int. 61, 1155–1163 (2023). https://doi.org/10.1134/S0016702923080049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923080049

Keywords:

Navigation