Skip to main content
Log in

Feldspar Megacrysts as a Source of Information on Crustal Contamination of Basaltic Melt

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper discusses data on the elemental composition and 87Sr/86Sr, and δ18O isotopic ratios of feldspar megacrysts collected from lava flows, tuffs, and cinders of three volcanic fields in the Baikal rift system: Iya–Uda, Vitim, and Khamar-Daban, which are located within the early Precambrian, Riphean, and Paleozoic crustal blocks, respectively. Megacrysts are hosted in trachybasalts in the Iya–Uda and Khamar-Daban fields and in basanites in the Vitim field. Megacrysts belong to the following three compositional groups of minerals: (i) plagioclase in lavas of the Iya–Uda field, (ii) anorthoclase in lava flows, tuffs, and cinders of the Khamar-Daban and Vitim fields, and (iii) sanidine in the Vitim field. Elemental and isotope data suggest that megacrysts crystallized in volcanic chambers at different depth levels: anorthoclase crystallized from the most primitive magma with mantle-derived isotopic signatures at subcrustal depth levels, plagioclases were produced in deep crustal chambers during the interaction between mantle-derived magma and crustal rocks, and sanidine was captured from the upper crustal rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. A. V. Akinin, A. V. Sobolev, T. Ntaflos, and W. Richter, “Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts,” Contrib. Mineral. Petrol. 150, 85–101 (2005).

    Article  Google Scholar 

  2. I. V. Ashchepkov, Deep-Seated Xenoliths of the Baikal Rift (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  3. I. V. Ashchepkov, S. V. Travin, A. I. Saprykin, L. Andre, P. A. Gerasimov, and O. S. Khmelnikova, “Age of xenoith-bearing basalts and mantle evolution in the Baikal rift zone,” Russ. Geol. Geophys. 44 (11), 1121–1149 (2003).

    Google Scholar 

  4. I. V. Ashchepkov, L. André, H. Downes, and B. A. Belyatsky, “Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): polybaric fractionation of rising melts in the mantle?,” J. Asian Earth Sci. 42, 14–37 (2011).

    Article  Google Scholar 

  5. V. G. Belichenko, E. V. Sklyarov, and N. L. Dobretsov, “Geodynamic map of the Paleoasian ocean. Eastern segment,” Geol. Geofiz. 35 (7–8), 29–40 (1994).

    Google Scholar 

  6. V. G. Belichenko, N. K. Geletii, and I. G. Barash, “Barguzin microcontinent (Baikal mountain area): the problem of outlining,” Russ. Geol. Geophys. 47 (10), 1049–1059 (2006).

    Google Scholar 

  7. I. N. Bindeman, V. V. Ponomareva, J. C. Bailey, and J. W. Valley, “Volcanic arc of Kamchatka: a province with high-Δ18O magma sources and large-scale 18O/16O depletion of the upper crust,” Geochem. Cosmoch. Acta 68, 841–865 (2004).

    Article  Google Scholar 

  8. M. I. Burakov and E. E. Fedorov, “Basalts of the Iya–Uda interfluve (East Sayan),” Geological Problems of Asia (AN SSSR, Moscow, 1954), Vol. 1 [in Russian].

    Google Scholar 

  9. A. Coote, P. Shane, C. Stirling, and M. Reid, “The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent,” Contrib. Mineral. Petrol. 173, no. 14 (2018).

  10. J. P. Davidson, B. Charlier, and J. M. Perlroth, and R. Hora, “Mineral isochrons and isotopic fingerprinting: pitfalls and promises,” Geology 33 (1), 29–32 (2005).

    Article  Google Scholar 

  11. J. P. Davidson, D. J. Morgan, B. Charlier, B. L. A. Charlier, R. Harlou, and J. M. Hora, “Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems,” Annu. Rev. Earth Planet. Sci. 35, 273–311 (2007).

    Article  Google Scholar 

  12. E. I. Demonterova, A. V. Ivanov, and A. B. Perepelov, “Late Cenozoic volcanism of the Uda river area (eastern Sayan, Siberia): the first geochemical and isotopic data,” Geodynam. Tectonophys. 8 (3), 445–448 (2017).

    Article  Google Scholar 

  13. E. I. Demonterova and M. N. Maslovskaya, “Chromatographic extraction of strontium in samples with high Rb/Sr ratios for mass-spectrometric analysis,” Applied Geochemistry. Analytical Studies, Ed. by E. K. Burenkov and A. A. Kremenetskii, (IMGRE, Moscow, 2003), Vol. 4, pp. 15–19. [in Russian].

    Google Scholar 

  14. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals. Volume 4. Framework Silicates (Longmans, London, 1963).

  15. N. V. Dmitrieva and A. D. Nozhkin, “Geochemistry of the Paleoproterozoic metaterrigenous rocks of the Biryusa Block, southwestern Siberian Craton,” Lithol. Miner. Resour. 47 (2), 156–179 (2012).

    Article  Google Scholar 

  16. T. V. Donskaya, D. P. Gladkochub, A. M. Mazukabzov, and M. T. D. Vingeit, “Early Proterozoic postcollisional granitoids of the Biryusa block of the Siberian Craton,” Russ. Geol. Geophys. 55 (7), 1028–1043 (2014).

    Article  Google Scholar 

  17. W. A. Duffield and J. Ruiz, “Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes,” Contrib. Mineral. Petrol. 110, 192–210 (1992).

    Article  Google Scholar 

  18. B. R. Edwards and J. K. Russell, “Influence of magmatic assimilation on mineral growth and zoning,” Can. Mineral. 34, 1149–1162 (1996).

    Google Scholar 

  19. J. M. Eiler, “Oxygen isotope variations of basaltic lavas and upper mantle rocks,” Rev. Mineral. Geochem. 43 (1), 319–364 (2001).

    Article  Google Scholar 

  20. S. V. Esin, Injection Magmatism in the Upper Mantle: Testing Empirical Clinopyroxene Geobarometer (NITs OIGGM SO RAN, Novosibirsk, 1993) [in Russian].

  21. G. Faur, Principles of Isotope Geology (Wiley, 1986).

  22. D. J. Geist, J. D. Myers, and C. D. Frost, “Megacryst–bulk rock isotopic disequilibrium as an indicator of contamination processes: the Edgecumbe Volcanic Field, SE Alaska,” Contrib. Mineral. Petrol. 99, 105–112 (1988).

    Article  Google Scholar 

  23. J. F. Guo, T. H. Green, and S. Y. O’Relly, “Ba partitioning and the origin of anorthoclase megacrysts in basalitic rocks,” Mineral. Mag. 56, 101–107 (1992).

    Article  Google Scholar 

  24. M. D. Higgins and D. Chandrasekharam, “Nature of sub-volcanic magma chambers, Deccan Province, India: Evidence from quantitative textural analysis of plagioclase megacrysts in the Giant plagioclase basalts,” J. Petrol. 48 (5), 885–900 (2007).

    Article  Google Scholar 

  25. W. Hildreth, “A critical overview of silicic magmatism,” in Penrose Conference on Longevity and Dynamics of Rhyolitic Magma Systems, Mammoth, USA, 2001 (Mammoth, 2001).

  26. D. A. Ionov, S. Y. O’Reilly, and I. V. Ashchepkov, “Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar–Daban, southern Baikal region, Russia,” Contrib. Mineral. Petrol. 122, 174–190 (1995).

    Article  Google Scholar 

  27. A. V. Ivanov, “Interaction of mantle melts with crust during their ascent to the surface: reason and consequences,” Geodinam. Tektonofiz. 3 (1), 19–26 (2012).

    Article  Google Scholar 

  28. A. V. Ivanov, E. I. Demonterova, A. B. Perepelov, V. Lebedev, and H. He, “Volcanism in the Baikal rift: 40 years of active-versus-passive model discussion,” Earth-Sci. Rev. 148, 18–43 (2015).

    Article  Google Scholar 

  29. A. I. Kiselev, M. E. Medvedev, and G. A. Golovko, Volcanism of the Baikal Rift Zone and Problems of Deep-Seated Magma Formation (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  30. Classification of Igneous Rocks and Glossary of Terms. Recommendations of Subcommision on Systematics of Igneous Rocks of the International Union of Geological Sciences (Nedra, Moscow, 1997) [in Russian].

  31. I. Kushiro, “Origin of magmas in subduction zones: a review of experimental studies,” Proc. Japan. Academ., Series B. 83, 1–15 (2007).https://doi.org/10.2183/pjab.83.1

    Article  Google Scholar 

  32. W. Li, C. Tao, W. Zhang, J. Liu, J. Liang, S. Liao, and W. Yang, “Melt inclusions in plagioclase macrocrysts at Mount Jourdanne, Southwest Indian Ridge (~64° E): implications for an enriched mantle source and shallow magmatic processes,” Minerals. 9, 493 2019).

    Article  Google Scholar 

  33. K. D. Litasov and V. G. Malkovets, “Sr-Ba-Rb–systematics of megacrystals of alkaline feldspars from basaltic rocks of Central Asia,” Geol. Geofiz. 39 (9), 1304–1308 (1998).

    Google Scholar 

  34. K. D. Litasov and H. Taniguchi, Mantle Evolution beneath Baikal Rift, CNEAS Monogr. Ser. 5, (2002).

  35. C. Lundstrom, A. Boudreau, and M. Pertermann, “Diffusion–reaction in a thermal gradient: Implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering,” Earth Planet. Sci. Lett. 237 (3–4), 829–854 (2005). https://doi.org/10.1016/j.epsl.2005.06.026Mc

  36. W. F. McDonough and S. -S. Sun, “The composition of Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  37. A. Perepelov, M. Kuzmin, S. Tsypukova, Y. Shcherbakov, S. Dril, A. Didenko, E. Dalai-Erdene, M. Puzankov, and A. Zhgilev, “Late Cenozoic Uguumur and Bod–Uul volcanic centers in northern Mongolia: mineralogy, geochemistry, and magma sources,” Minerals 10 (7), 612.

  38. G. Perini, “Sr-isotope and micro-isotope analyses of minerals: examples from some mafic alkaline potassic rocks,” Period. Mineral. 69, 107–124 (2000).

    Google Scholar 

  39. C. Pin, B. Danielle, C. Bassin, and F. Poitrasson, “Contomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography,” Anal. Chem. Acta. 299, 209–217 (1994).

    Article  Google Scholar 

  40. S. V. Rasskazov, Bazaltoids of Udokan (Nauka Sib. Otd., Novosibirsk, 1985) [in Russian].

    Google Scholar 

  41. S. V. Rasskazov, Magmatism of the Baikal Rift System (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  42. S. V. Rasskazov and A. V. Ivanov, “Redox conditions of hot spot magmatism and extensional Zones of the Baikal rift system,” Precambrian Lithotectonic Complexes of East Siberia (Irkutsk Univ., Irkutsk, 1998), pp. 44–58 [in Russian].

    Google Scholar 

  43. M. I. Renjith, “Micro-textures in plagioclase from 1994–1995 eruption, Barren Island Volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone,” Geosci. Front. 5, 113–126 (2014).

    Article  Google Scholar 

  44. H. Sheth, “Giant plagioclase basalts: continental flood basalt–induced remobilization of anorthositic mushes in a deep crustal sill complex,” GSA Bull. 128 (5/6), 916–925.

  45. F. M. Stupak, V. A. Lebedev, and E. A. Kudryashova, “Structural material complexes in the Late Cenozoic Udokan lava plateau: patterns of distribution and rock associations,” J. Volcanol. Seismol. 6 (3), 172–183 (2012).

    Article  Google Scholar 

  46. A. D. Sounders and M. J. Norry, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by S. -S. Sun and W. F. McDonough, Geol. Soc. London, Sp. Publ. 42, 313–345 (1989).

  47. H. P. Taylor and S. M.F. Sheppard, “Igneous rocks: I. Processes of isotopic fractionation and isotope systematics,” In: Stable Isotopes in High Temperature Geological Processes, Ed. by J. W. Valley, H. P. Taylor, and J. R. O’Neil, Rev. Mineral. 16, 227–271 (1986).

    Google Scholar 

  48. F. J. Tepley, III, J. P. Davidson, and M. A. Clynne, “Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen volcanic center, California,” J. Petrol. 40 (5), 787–806 (1999).

    Article  Google Scholar 

  49. F. J. Tepley, III, J. P. Davidson, R. I. Tilling, and J. G. Arth, “Magma mixing, recharge, and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico,” J. Petrol. 41, 1397–1411 (2000).

    Article  Google Scholar 

  50. O. M. Turkina, A. D. Nozhkin, and T. B. Bayanova, “Sources and formation conditions of Early Proterozoic granitoids from the southwestern margin of the Siberian Craton,” Petrology 14 (3), 262–283 (2006).

    Article  Google Scholar 

  51. A. Vho, P. Lanari, and D. Rubatto, “An internally-consistent database for oxygen isotope fractionation between minerals,” J. Petrol. 60 (11), 2101–2130 (2019).

    Article  Google Scholar 

  52. N. Ya. Volyanyuk, B. M. Vladimirov, V. G. Semenova, and V. M. Novikov, “Anorthoclase megacrysts from basanites and problem of their genesis,” Dokl. Akad. Nauk SSSR 240 (5), 938–941 (1978).

    Google Scholar 

  53. V. V. Yarmolyuk, V. G. Ivanov, V. I. Kovalenko, and B. G. Pokrovsky, “Magmatism and geodynamics of the southern Baikal volcanic region (mantle hot spot): results of geochronological, geochemical, and isotopic (Sr, Nd, and O) investigations,” Petrology 11 (1), 1–30 (2003).

    Google Scholar 

  54. Z. F. Zhao and Y. F. Zheng, “Calculation of oxygen isotope fractionation in magmatic rocks,” Chem. Geol. 193, 59–80 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank B.G. Pokrovskii, K.N. Shatagin, and E.O. Dubinina for constructive criticism that led us to significantly improve the manuscript. The studies were carried out at the following shared research facilities: Center for Geodynamics and Geochronology at the Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, in Irkutsk, Center for Multielemental and Isotope Studies at Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, in Novosibirsk, and the Analytical Center of Mineralogical−Geochemical and Isotope Studies at Dobretsov Geological Institute, Siberian Branch, Russian Academy of Sciences, in Ulan-Ude.

Funding

The equipment of the Center for Geodynamics and Geochronology was used in this research under Grant 075-15-2021-682. The fieldwork and EPMA studies were supported by Megagrant 075-15-2022-1100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Demonterova or A. V. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demonterova, E.I., Ivanov, A.V., Palessky, S.V. et al. Feldspar Megacrysts as a Source of Information on Crustal Contamination of Basaltic Melt. Geochem. Int. 61, 669–686 (2023). https://doi.org/10.1134/S0016702923070029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923070029

Keywords:

Navigation