Skip to main content
Log in

Modeling and Predicting the Environment State in the Impact Area of a Copper–Nickel Plant: A Balanced Model of the Transformations of Atmospheric Deposition at the Catchment and in Lake

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper discusses modeling the dynamics of nickel concentration in soils, water, and the bottom sediments of lakes caused by atmospheric emissions from the Pechenganickel plant, Kola Peninsula, throughout its whole operation period. The applied technology of balanced identification makes it possible to use a mathematical description of heterogeneous geochemical processes in ecosystems to combine heterogeneous experimental data and build up a computer model with an optimal balance of its complexity and fitting quality of the data. The model is used to analyze the spatial and temporal variability of natural objects in the zone of distribution of atmospheric pollution (nickel) from the Pechenganickel plant. The paper presents and discusses results of this study, including estimates of the retrospective state of the simulated objects (before the start of the intense studies) and a forecast of their dynamics until 2030. According to the model calculations, the intensity of Ni accumulation in the soil and bottom sediments was 2.35 and 4.48 mg/(m2 year) during the maximum deposition periods (1980–2005), whereas the model predicts a decrease in the intensity of Ni accumulation in the bottom sediments (0.23 mg/(m2 year)) and slow Ni leaching from the soil (0.19 mg/(m2 year)) after the shutdown of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Current State of Terrestrial Ecosystems in the Joint Norwegian, Russian, and Finnish Border Area in Northern Fennoscandia. Working Papers of the Finnish Forest Research Institute, Ed. by J. Derome, T. Myking, and P. A. Aarrestad, (Finnish Forest Research Institute, Helsinki, 2008), Vol. 85.

    Google Scholar 

  2. V. A. Dauvalter, N. A. Kashulin, and S. S. Sandimirov, “Trends in variations of chemical composition of the bottom deposits of fresh-water subarctic and arctic basens under the influence of natural and anthropogenic factors,” Tr. KolNTs RAS, No. 3, 55–87 (2012).

    Google Scholar 

  3. V. A. Dauvalter, N. A. Kashulin, and D. B. Denisov, “Trends in variations of heavy metal content in the bottom deposits of the Norhern Fennoscandia lakes in last centuries,” Tr. KarNTs RAS, No. 9, 62–75 (2015).

    Google Scholar 

  4. G. A. Evdokimova, N. P. Mozgova, and M. V. Korneikova, “The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel Plant,” Euras. Soil Sci. 47 (5), 504–510 (2014).

    Google Scholar 

  5. N. A. Gashkina and T. I. Moiseenko, “Character of spatiotemporal variations in the chemical composition of lake water under the influence of emission from copper–nickel plants: prediction of acidification,” Geochem. Int. 54 (12), 1079–1093 (2016).

    Article  Google Scholar 

  6. J. Gunn, W. Keller, J. Negusanti, R. Potvin, P. Beskett, and K. Winterhalder, “Ecosystem recovery after emission reductions: Sudbury, Canada,” Water Air Soil Pollut. 85, 1783–1788 (1995).

    Article  Google Scholar 

  7. G. M. Kashulina, Air-Technogenic Transformation of Soils of the European Subarctic Region (KNTs RAN, Apatity, 2002), Vol. 1 [in Russian].

  8. E. J. Kellaway, M. C. Eimers, and S. A. Watmough, “Liming legacy effects associated with the world’s largest soil liming and regreening program in Sudbury, Ontario, Canada,” Sci. Total Environ. 805, 150321 (2022).

    Article  Google Scholar 

  9. B. Kvaeven, M. J. Ulstein, and B. L. Skjelkvåle, “ICP Waters – An international program for surface water monitoring,” Water Air Soil Pollut. 130, 775–780 (2001).

    Article  Google Scholar 

  10. T. I. Moiseenko, “The fate of metals in Arctic surface waters. Method for defining critical levels,” Sci. Total Environ. 236, 19–39 (1999).

    Article  Google Scholar 

  11. T. I. Moiseenko and N. A. Gashkina, Formation of Chemical Composition of Lacustrine Waters under Environmental Changes (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  12. T. Moiseenko and A. Sharov, “Large Russian lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review,” Geosciences 9, 492 (2019).

    Article  Google Scholar 

  13. T. I. Moiseenko, V. V. Megorskii, N. A. Gashkina, and L. P. Kudryavtseva, “Water pollution effect on population health in an industrial northern region,” Water Res. 37 (2), 194–203 (2010).

    Article  Google Scholar 

  14. T. I. Moiseenko, N. A. Gashkina, M. I. Dinu, T. A. Kremleva, and V. Y. Khoroshavin, “Water chemistry of arctic lakes under airborne contamination of watersheds,” Water 12, 1659 (2020).

    Article  Google Scholar 

  15. Yu. G. Motovilov, “ECOMAG: a distributed model of runoff formation and pollution transformation in river basins solution,” IAHS Publ 361, 227–234 (2013).

    Google Scholar 

  16. Yu. G. Motovilov, “Assessment of anthropogenic contamination of basins by heavy metals based on the ECOMAG model,” Scientific Support of “Water Strategy of the Russian Federation up to 2020, (Karel’sk. Nauchn. Ts. RAS, Petrozavodsk, 2015), Vol. 1, pp. 335–343 [in Russian].

    Google Scholar 

  17. R. Narendrula, K. K. Nkongolo, P. Beckett, and G. Spiers, “Total and bioavailable metals in two contrasting mining regions (Sudbury in Canada and Lubumbashi in DR-Congo): relation to genetic variation in plant populations,” Chem. Ecol. 29 (2), 111–127 (2013).

    Article  Google Scholar 

  18. S. A. Norton, P. G. Appleby, V. Dauvalter, and T. S. Traaen, Trace Metal Pollution in Eastern Finnmark, Norway and Kola Peninsula, Northeastern Russia as Evidences by Studies of Lake Sediment. NIVA–Report 41/1996 (NIVA, Oslo, 1996).

    Google Scholar 

  19. J. O. Nriagu, H. K.T. Wong, G. Lawson, and P. Daniel, “Saturation of ecosystems with toxic metals in Sudbury basin, Ontario, Canada,” Sci. Total Environ. 223, 99–117 (1998).

    Article  Google Scholar 

  20. M. A. Palmer, J. B. Zedler, and D. A. Falk, Foundations of Restoration Ecology (The Science and Practice of Ecological Restoration Series), 2nd ed. (Island Press, Washington, 2016).

    Book  Google Scholar 

  21. Trace Elements in Boreal Forests, Ed. by A. S. Isaev (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  22. N. E. Ratkin, Methodological and Methodical Aspects of Study of Air-Technogenic Contamination of Impact Territories with Reference to the Murmansk Region (MGTU, Murmansk, 2001) [in Russian].

    Google Scholar 

  23. N. E. Ratkin, V. E. Asming, and V. V. Koshkin, “Modeling of air-technogenic contamination of cover with reference to the Pechenga district,” Ecological-Geographical Problems of the Kola North, (Kol’skii nauchnyi tsentr RAN, Institut problem promyshlennoi ekologii Severa, Apatity, 1999), pp. 28–42 [in Russian].

  24. S. Rognerud, S. A. Norton, and V. Dauvalter, Heavy Metal Pollution in Lake Sediments in the Border Areas between Russia and Norway. NIVA–Report 522/93 (NIVA, Oslo, 1993).

    Google Scholar 

  25. K. Rydgren, R. Halvorsen, J. P. Töpper, I. Auestad, L. N. Hamre, E. Jongejans, and J. Sulavik, “Advancing restoration ecology: a new approach to predict time to recovery,” J. Appl. Ecol. 56, 225–234 (2019).

    Article  Google Scholar 

  26. M. Schindler and B. S. Kamber, “High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada,” Appl. Geochem. 37, 102–116 (2013).

    Article  Google Scholar 

  27. B. L. Skjelkvale, T. Andersen, E. Fjeld, J. Mannio, A. Wilander, K. Johansson, J. P. Jensen, and T. Moiseenko, “Heavy metals in nordic lakes: concentrations, geographical patterns and relation to critical limits,” AMBIO 30 (1), 2–10 (2001).

    Article  Google Scholar 

  28. A. V. Sokolov and V. V. Voloshinov, “Choice of mathematical models: balance between complexity and proximity to changes,” Int. J. Open Information Technol. 6 (9), 33–41 (2018).

    Google Scholar 

  29. A. V. Sokolov and V. V. Voloshinov, “Model Selection by Balanced Identification: the Interplay of Optimization and Distributed Computing,” Open Comput. Sci. 10, 283–295 (2020).

    Article  Google Scholar 

  30. I. Stavi, S. M. Siad, A. P. Kyriazopoulos, and R. Halbac-Cotoara-Zamfir, “Water runoff harvesting systems for restoration of degraded rangelands: a review of challenges and opportunities,” J. Environ. Manage 255, 109823 (2020).

    Article  Google Scholar 

  31. K. Strobl, J. Kollmann, and L. H. Teixeira, “Integrated assessment of ecosystem recovery using a multifunctionality approach,” Ecosphere 10 (11), e02930 (2019).

    Article  Google Scholar 

  32. H. Tømmervik, M. E. Johansen, J. P. Pedersen, and T. Guneriussen, “Integration of remote sensed and in‑situ data in an analysis of the air pollution effects on terrestrial ecosystems in the border areas between Norway and Russia,” Environ. Monit. Assess. 49, 51–85 (1998).

    Article  Google Scholar 

  33. A. E. Tropea, A. M. Paterson, W. Keller, and J. P. Smol, “Sudbury sediments revisited: evaluating liminological recovery in a multiple-stressor environment,” Water Air Soil Pollut. 210, 317–333 (2010).

    Article  Google Scholar 

  34. N. J. Waltham, M. Elliott, S. Y. Lee, C. Lovelock, C. M. Duarte, C. Buelow, C. Simenstad, I. Nagelkerken, L. Claassens, C. K-C. Wen, M. Barletta, R. M. Connolly, C. Gillies, W. J. Mitsch, M. B. Ogburn, J. Purandare, H. Possingham, and M. Sheaves, “UN Decade on Ecosystem Restoration 2021–2030 – What Chance for Success in Restoring Coastal Ecosystems?,” Front. Mar. Sci. 7 (71), 1–5 (2020).

    Article  Google Scholar 

  35. E. F. Zipkin, E. R. Zylstra, A. D. Wright, S. P. Saunders, A. O. Finley, M. C. Dietze, M. S. Itter, and M. W. Tingley, “Addressing data integration challenges to link ecological processes across scales,” Front. Ecol. Environ. 19, 30–38 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the editor T.N. Bugaeva and the reviewers.

Funding

This study was conducted with the use of equipment of the Center for Collective Use of Research Equipment Complex for the Modeling and Procession of Data from Megaclass Research Equipment at Kurchatov Institute, http://ckp.nrcki.ru/. This study was supported by the Russian Science Foundation, project no. 22-17-00061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sokolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.V., Moiseenko, T.I., Gashkina, N.A. et al. Modeling and Predicting the Environment State in the Impact Area of a Copper–Nickel Plant: A Balanced Model of the Transformations of Atmospheric Deposition at the Catchment and in Lake. Geochem. Int. 61, 768–779 (2023). https://doi.org/10.1134/S0016702923060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923060095

Keywords:

Navigation