Skip to main content
Log in

Heavy Metals and Organic Carbon in the Bottom Sediments of Shallow Bights of the Peter the Great Bay

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A noticeable feature of labile heavy metals is that they are highly prone to be to bioaccumulated and bioassimilated in natural environments. When in high concentrations, these metals are toxic to living organisms, as is particularly evident in the coastal shallow marine zones, which are most strongly affected by anthropogenic processes. This paper presents data on the contents of heavy metals, concentrations of organic carbon, and the granulometric composition of bottom-sediment cores in three shallow bights of the Peter the Great Bay, in two of which (Voevoda and Novgorodskaya bights), large bottom areas are overgrown with seagrass Zostera marina L. (sea zostera, ZM). Data on the vertical distribution of heavy metals and organic carbon in the cores showed that the highest concentrations of Zn and Cu (up to 204 and 91 mg/kg, respectively) occur in samples from Voevoda bight, and the highest concentrations of Mn and Pb (up to 344  and 45 mg/kg, respectively) were found in Novgorodskaya bight, where meadows of the seagrass grow. The highest Cr, Ni, and Co contents (up to 69, 31, and 13 mg/kg, respectively) were identified in Uglovoy bight, where sea grass is practically absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Arici and L. Bat, “Sediment-water interactions with eelgrass (Zostera spp.) from Sinop shores of the Black Sea,” Caspian J. Environ. Sci. 18 (2), 123–130 (2020).

    Google Scholar 

  2. Yu. A. Barabanshchikov, P. Ya. Tishchenko, P. Yu. Semkin, T. A. Mikhailik, and A. A. Kosyanenko, “Conditions of formation of therapeutic muds in the Voevoda Bight (Amur Bay, Sea of Japan),” Izv. TINRO 192, 167–176 (2018).

    Article  Google Scholar 

  3. V. Ya. Berger, “Production of the Eel Grass Zostera marina Linnaeus, 1753 in the White Sea,” Russ. J. Mar. Biol. 37 (5), 371–375 (2011).

    Article  Google Scholar 

  4. H. Brix and J. E. Lyngby, “The distribution of cadmium copper, lead and zinc in eelgrass (Zostera marina L.),” Sci. Total Environ. 24, 51–63 (1982).

    Article  Google Scholar 

  5. V. P. Chelomin, E. A. Bobkova, O. N. Lukyanova, and N. M. Chekmasova, “Cadmium-induced alterations in essential trace element homoeostasis in the tissues of scallop Mizuhopecten yessoensis,” Camp. Biorhem. Physiol. 110C (3), 329–335 (1995).

    Google Scholar 

  6. E. N. Chernova, “Background concentrations of metals in Seagrass from the Peter the Great Bay and assessment of its modern ecological state,” Modern Ecological State of the Peter the Great Bay, Sea of Japan, Ed. by N. K. Khristoforova (DVFU, Vladivostok, 2012), pp. 382–396 [in Russian].

    Google Scholar 

  7. E. N. Chernova and S. I. Kozhenkova, “Determination of threshold concentrations of metals in indicator algae of coastal waters in the northwest Sea of Japan,” Oceanology 56 (3), 363–371 (2016).

    Article  Google Scholar 

  8. W. Feng, Z. Wang, H. Xu, D. Zhang, H. Zhang, and W. Zhu, “Species-specific bioaccumulation of trace metals among fish species from Xincun Lagoon, South China Sea,” Sci. Rept. 10, 21800 (2020). https://doi.org/10.1038/s41598-020-77917-y

    Article  Google Scholar 

  9. E. D. Goldberg, “The mussel watch concept,” Environ. Monit. Assess. 7, 91–103 (1986).

    Article  Google Scholar 

  10. N. I. Grigor’eva, “Posyet Bay: physicogeographical characteristics, climate, and hydrological mode,” Modern Ecological State of the Peter the Great Bay, Sea of Japan, Ed. by N. K. Khristoforova (DVFU, Vladivostok, 2012), pp. 31–61 [in Russian]

    Google Scholar 

  11. B. T. Hart, “Uptake of trace metals by sediments and suspended particulates: a review,” Hydrobiologia 91, 299–313 (1982).

    Article  Google Scholar 

  12. S. Hosokawa, S. Konuma, and Y. Nakamura, “Accumulation of trace metal elements (Cu, Zn, Cd and Pb) in surface sediment via decomposed seagrass leaves: a mesocosm experiment using Zostera marina L., PLoS ONE. 11 (6), (2016). doi: (2016).0157983https://doi.org/10.1371/journal.pone

  13. D. V. Ivanov, V. S. Valiev, I. I. Ziganshin, D. E. Shamaev, E. E. Paimikina, A. A. Marasov, V. V. Malanin, R. R. Khasanov, and M. A. Unkovskaya, “Structural relationship of grain-size composition, content of organic matter and heavy metals in bottom deposits,” Gidroekologiya, No. 2, 23–30 (2020).

    Google Scholar 

  14. E. V. Khozhaenko, R. Y. Khotimchenko, V. V. Kovalev, M. Y. Khotimchenko, and E. A. Podkorytova, “Metal binding activity of pectin isolated from seagrass Zostera marina and its derivatives, Rus. J. Mar. Biol. 41 (6), 485–489 (2015).

    Article  Google Scholar 

  15. N. K. Khristoforova, Bioindication and Monitoring of Water Contamination by Heavy Metals (Nauka, Leningrad, 1989) [in Russian].

    Google Scholar 

  16. N. K. Khristoforova, V. M. Shulkin, V. Ya. Kavun, and E. N. Chernova, (Dalnauka, Vladivostok, 1994) [in Russian].

  17. N. K. Khristoforova, A. A. Emelyanov, and A. V. Efimov, “Bioindication of heay metal contamination of coastal-sea waters of Russky I. (Peter the Great Bay, Sea of Japan),” Izv. TINRO 192, 157–166 (2018).

    Article  Google Scholar 

  18. L. T. Kovekovdova, Extended Abstract of Doctoral Dissertation in Biology (TINRO–Tsentr, Vladivostok, 2011) [in Russian].

  19. S. I. Kozhenkova, Extended Abstract of Candidate’s Dissertation in Biology (IBM, Vladivostok, 2000) [in Russian].

  20. A. W. D. Larkum, R. J. Orth, and C. M. Duarte, “Seagrasses: Biology, Ecology and Conservation (Springer, 2006).

    Google Scholar 

  21. Pilot Chart of the Northwestern Coast of the Sea of Japan (GUNIO MO, St. Petersburg, 1996) [in Russian].

  22. J. E. Lyngby and H. Brix, “Heavy metals in eelgrass (Zostera marina L.) during growth and decomposition,” Hydrobiologia 176/177, 189–196 (1989).

    Article  Google Scholar 

  23. J. V. Macias-Zamora, J. L. Sanchez-Osorio, L. M. Rios-Mendoza, N. Ramırez-Alvarez, M. A. Huerta-Diaz, and D. Lopez-Sanchez, “Trace metals in sediments and Zostera marina of San Ignacio and Ojo de Liebre Lagoons in the Central Pacific Coast of Baja California, Mexico,” Arch. Environ. Contam. Toxicol. 55, 218–228 (2008).

    Article  Google Scholar 

  24. R. F. C. Mantoura, A. Dickson, and J. P. Riley, “The complexation of metals with humic materials in natural waters,” Estuarine Coastal Mar. Sci. 6, 387–408 (1978).

    Article  Google Scholar 

  25. C. P. McRoy, “Seagrass productivity: carbon uptake experiments in eelgrass, Zoster Marina,” Aquaculture 4, 131–137 (1974).

    Article  Google Scholar 

  26. F. M. M. Morel, R. J. M. Hudson, and N. M. Price, “Limitation of productivity by trace metals in the sea,” Limnol. Oceanogr. 36 (8), 1742–1755 (1991).

    Article  Google Scholar 

  27. V. I. Petukhov, E. A. Petrova, and O. V. Losev, “Water pollution by heavy metals and oil products in Uglovoi Bay in February 2010–2016,” Water Res. 46 (1), 103–111 (2019).

    Article  Google Scholar 

  28. V. A. Rakov, “Distribution and ecology of oyster reefs of the northern Amur Bay,” Ekol. Vestn., No. 4, 21–30 (2010).

  29. J. Richir, N. Luy, G. Lepoint, E. Rozet, A. A. Azcarate, and S. Gobert, “Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements,” Aquat. Toxicol. 140–141, 157–173 (2013).

    Article  Google Scholar 

  30. R. Riosmena-Rodríguez, A. Talavera-Sáenz, B. Acosta-Vargas, and S. C. Gardner, “Heavy metals dynamics in seaweeds and seagrasses in Bahía Magdalena, B.C.S., México,” J. Appl. Phycol. 22, 283–291 (2010).

    Article  Google Scholar 

  31. C. Sanz-L’azaro, P. Malea, E. T. Apostolaki, I. Kalantzi, A. Mar’ın, and I. Karakassis, “The role of the seagrass Posidonia oceanica in the cycling of trace elements,” Biogeosciences 9, 2497–2507 (2012).

    Article  Google Scholar 

  32. J. Schaller, “Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments?” Chemosphere 107, 336–343 (2014).

    Article  Google Scholar 

  33. M. A. Shishlova, Extended Abstract of Candidate’s Dissertation in Biology (IBM, Vladivostok, 2002) [in Russian].

  34. V. M. Shulkin, Metals in the Ecosystems of Marin Shoals (Dal’nauka, Vladivostok, 2004) [in Russian].

    Google Scholar 

  35. W. G. Sunda, “Feedback interactions between trace metal nutrients and phytoplankton in the ocean,” Front. Microbiol. 3, 204 (2012). https://doi.org/10.3389/fmicb.2012.00204

    Article  Google Scholar 

  36. P. Ya. Tishchenko, N. D. Khodorenko, Yu. A. Barabanshchikov, T. I. Volkova, A. A. Maryash, T. A. Mikhailik, G. Yu. Pavlova, S. G. Sagalaev, P. Yu. Semkin, P. P. Tishchenko, M. G. Shvetsova, and E. M. Shkirnikova, “Diagenesis of organic matter in eelgrass (Zostera marina L.) vegetated sediments,” Okeanology 60 (3), 341–352 (2020).

    Article  Google Scholar 

  37. P. Ya. Tishchenko, Yu. A. Barabanshchikov, G. Yu. Pavlova, A. A. Ryumina, S. G. Sagalaev, P. Yu. Semkin, P. P. Tishchenko, O. A. Ulanova, M. G. Shvetsova, E. M. Shkirnikova, and E. Yu. Tibenko, “Hydrochemical state of Uglovoi Bay (Amur Bay) in different seasons,” Izv. TINRO. 201(1), 138–157 (2021).

    Article  Google Scholar 

  38. P. Y. Tischenko, G. V. Borisenko, Y. A. Barabanshchikov, G. Y. Pavlova, A. A. Ryumina, S. G. Sagalaev, P. Y. Semkin, P. P. Tischenko, O. A. Ulanova, M. G. Shvetsova, and E. M. Shkirnikova, “Estimation of Nutrient Fluxes on the Interface Bottom Water–Sediments in Shallow Bights of the Peter the Great Bay, Sea of Japan,” Geochem. Int. 60 (9), 891–904 (2022).

    Article  Google Scholar 

  39. P. Y. Tischenko, E. M. Shkirnikova, V. A. Goryachev, A. A. Ryumina, S. G. Sagalaev, P. P. Tischenko, O. A. Ulanova, and E. Y. Tibenko, “Accumulated Organic Carbon in the Sediments of Shallow Bights of the Peter the Great Bay, Sea of Japan,” Geochem. Int. 60 (10), 1005–1013 (2022a).

    Article  Google Scholar 

  40. M. A. Vashchenko, P. M. Zhadan, T. N. Almyashova, A. L. Kovaleva, and E. N. Slinko, “Assessment of the contamination level of bottom sediments of Amursky Bay (Sea of Japan) and their potential toxicity,” Russ. J. Mar. Biol. 36 (5), 359–366 (2010).

    Article  Google Scholar 

  41. C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, and E. A. Goldberg, Trace Metals in Sea Water (Plenum Press, New York, 1983).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank N.A. Sereda, a leading engineer at the Laboratory of Hydrochemistry of Il`ichev Pacific Oceanological Institute, Far East Division, Russian Academy of Sciences, for continuous assistance and valuable help with the laboratory studies. The authors are grateful to the scientific editor V.Yu. Rusakov and the reviewers for assistance in improving the manuscript.

Funding

This study was supported by Russian Foundation for Basic Research, project no. 20-05-00381-a, and basic science research programme, theme no. 121-021500052-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ryumina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryumina, A.A., Tishchenko, P.Y. & Shkirnikova, E.M. Heavy Metals and Organic Carbon in the Bottom Sediments of Shallow Bights of the Peter the Great Bay. Geochem. Int. 61, 724–734 (2023). https://doi.org/10.1134/S0016702923060083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923060083

Keywords:

Navigation