Skip to main content
Log in

Archean Phlogopite Peridotite from Gneissic Enderbites of the Bug Granulite–Gneiss Terrane (Ukrainian Shield): Compositional Features and Possible Mechanisms of its Formation

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The paper reports mineral chemistry, whole-rock major and trace element composition, structure, and geological setting of the phlogopite peridotite lens within the Bug granulite–gneiss terrane of the Dniester–Bug Province, Ukrainian Shield. Geochemical features of the studied peridotites and minerals indicate a complex evolution of the lens. The early stage is marked by the crystallization of olivine + spinel (Al-chromite) cumulus from melt of supposably picritic composition, and further crystallization of clinopyroxene. The melt shows signs of hybridization by host gneissic enderbite. Orthopyroxene crystallized later and frequently replaces clinopyroxene. The phlogopite cystallization is likely related to the fluid activity and the growth of potassium potential in the fluid. Granulite-facies metamorphism accompanied by ductile deformations affected the mineral asseblage and chemical compositions of peridotites and orthopyroxenites. At the final stage, the rocks and minerals experienced retrograde metamorphism and local foliation of the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. C. R. Anhaeusser, “The anatomy of an extrusive-intrusive Archaean mafic-ultramafic sequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barberton greenstone belt,” South Africa. S. Afr. J. Geol. 104 (2), 167–204 (2001).

    Article  Google Scholar 

  2. S. Arai, “Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation,” Chem. Geol. 113 (3–4), 191–204 (1994).

    Article  Google Scholar 

  3. P. D. Asimow and M. S. Ghiorso, “Algorithmic modifications extending MELTS to calculate subsolidus phase relations,” Am. Mineral. 83 (9–10), 1127–1131 (1998).

    Article  Google Scholar 

  4. C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107, 27–40 (1991).

    Article  Google Scholar 

  5. Sh. K. Baltybaev, S. B. Lobach-Zhuchenko, V. V. Balaganskii, A. V. Yurchenko, Yu. S. Egorova, and E. S. Bogomolov, “Age and metamorphism of crystalline schists of the Bug granulite complex of the Ukrainian shield—oldest volcanic rocks of the basement of the East European Platform,” Regional. Geol. Metallogen. 58, 33–44 (2014).

    Google Scholar 

  6. Sh. K. Baltybaev, S. B. Lobach-Zhuchenko, Yu. S. Egorova, O. L. Galankina, and A. A. Yurchenko, “Transformation of peridotites in crustal conditions: thermodynamic modeling of mineral formation,” Evolution of Compositional and Isotope Composition of Precambrian Lithosphere, Ed. by V. A. Glebovitsky and Sh. K. Baltybaev (Izdatelsko-poligraficheskaya assotsiatsiya Vysshikh uchebnykh zavedenii, St. Petersburg, 2018), pp. 170–189 [in Russian].

  7. V. G. Batanova, G. Suhr, and A. V. Sobolev, “Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes,” Geochim. Cosmochim. Acta. 62 (5), 853–866 (1998).

    Article  Google Scholar 

  8. A. D. Beard, H. Downes, P. R.D. Mason, and V. R. Vetrin, “Depletion and enrichment processes in the lithosphere beneath Kola Peninsula (Russia): evidence from spinel lherzolite and werlite xenoliths,” Lithos 91 (1–4), 1–24 (2007).

    Article  Google Scholar 

  9. R. G. Berman, “Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications,” Can. Mineral. 32, 833–855 (1991).

    Google Scholar 

  10. E. V. Bibikova, A. A. Fedotova, T. I. Kirnozova, M. M. Fugzan, S. Claesson, L. S. Il’insky, L. M. Stepanyuk, and L. V. Shumlyansky, “Isotope- geochronological (U‑Th-Pb, Lu-Hf) study of the zircons from the Archean magmatic and metasedimentary rocks of the Podolia domain, Ukrainian Shield,” Geochem. Int. 51 (2), 87–108 (2013).

    Article  Google Scholar 

  11. E. V. Bibikova, S. Claesson, A. A. Fedotova, L. M. Stepanyuk, L. V. Shumlyanskii, T. I. Kirnozova, M. M. Fuzgan, and L. S. Il’insky, “Isotope–geochronological (U-Th-Pb, Lu-Hf) study of the zircons from the Archean magmatic and metasedimentary rocks of the Podolia Domain, Ukrainian Shield,” Geochem. Int. 51 (2), 87–108 (2013).

    Article  Google Scholar 

  12. F. R. Boyd, “Compositional differences between oceanic and cratonic lithosphere,” Earth Planet Sci Lett. 96, 15–26 (1989).

    Article  Google Scholar 

  13. F. R. Boyd and P. H. Nixon, “Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa,” Phys. Chem. Earth 9, 431–454 (1975).

    Article  Google Scholar 

  14. V. P. Bukharev, “Late Archean quasicratonic ultramafic magmatism of the Ukrainian shield (Middle Bug area),” Geol. Zh. 6, 92–100 (1991).

    Google Scholar 

  15. Y. Bussweiler, G. P. Brey, D. G Pearson, et al., “The aluminum-in-olivine thermometer for mantle peridotites – Experimental versus empirical calibration and potential applications,” Lithos 272–273, 301–314 (2017).

    Article  Google Scholar 

  16. G. Desharnais, D. C. Peck, P. Theyer, et al., Geology and mineral occurrences of the Fox River sill in the Great Falls area, Fox River Belt (part of NTS 53M/16). Report of Activities 2000, Manitoba Industry, Trade and Mines (Manitoba Geological Survey, 2000), pp. 42–48.

  17. H. Downes, R. MacDonald, and B. G.J. et al. Upton, “Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton,” J. Petrol. 45 (8), 1631–1662 (2004).

    Article  Google Scholar 

  18. B. O. Dressler and W. U. Reimold, “Terrestrial impact melt rocks and glasses,” Earth-Sci. Rev. 56, 205–284 (2001).

    Article  Google Scholar 

  19. A. Fabbrizio, Max W. Schmidt, and M. Petrelli, “Effect of fO2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: Development of a Eu3+/Eu2+ oxybarometer,” Chem. Geol. 559, 119967 (2021).

    Article  Google Scholar 

  20. S. F. Foley, D. Prelevic, T. Rehfeldt, and D. E. Jacob, “Minor and trace elements in olivines as probes into early igneous and mantle melting processes,” Earth Planet. Sci. Lett. 363, 181–191 (2013).

    Article  Google Scholar 

  21. R. Frei, A. Polat, and A. Meibom, “The Hadean upper mantle conundrum: evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Ga boninite-like metabasalts from the Isua Supracrustal Belt, Greenland,” Geochim. Cosmochim. Acta. 68 (7), 645–1660 (2004).

    Article  Google Scholar 

  22. C. R.L. Friend, V. C. Bennett, and A. P. Nutman, “Abyssal peridotites >3.800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex,” Contrib Mineral Petrol. 143, 71–92 (2002).

    Article  Google Scholar 

  23. M. S. Ghiorso, M. M. Hirschmann, P. W. Reiners, and V. C. Kress, “The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa,” Geochem. Geophys. Geosyst. 3 (5), 1030 (2002).

    Article  Google Scholar 

  24. W. L. Griffin, E. A. Belousova, and C O’Neill, et al., “The world turns over: Hadean–Archean crust–mantle evolution,” Lithos 189, 2–15 (2014).

    Article  Google Scholar 

  25. B. Harte, P. A. Winterburn, and J. J. Gurney, “Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho,” In: Mantle Metsasomatism, Ed. by M. Menzies (Academic Press Inc., London, 1987), pp. 145–220.

    Google Scholar 

  26. C. Herzberg, C. Vidito, and N. A. Starkey, “Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks,” Am. Mineral. 101 (9), 1952–1966 (2016).

    Article  Google Scholar 

  27. T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  28. M. Humayun, L. P. Qin, and M. D. Norman, “Geochemical evidence for excess iron in the mantle beneath Hawaii,” Science 306, 91–94 (2004).

    Article  Google Scholar 

  29. K. P. Jochum, D. B. Dingwell, A. Rocholl, et al., “The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis,” Geostand. Geoanalyt. Res. 24 (1), 87–133 (2000).

    Article  Google Scholar 

  30. K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, “Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm laser and matrix-matched calibration,” J. Anal. At. Spectrom. 22, 112–121 (2007).

    Article  Google Scholar 

  31. B. S. Kamber, K. D. Collerson, S. Moorbath, and M. J. Whitehouse, “Inheritance of early Archaean Pb‑isotope variability from long-lived Hadean protocrust,” Contrib. Mineral. Petrol. 145 (1), 25–46 (2003).

    Article  Google Scholar 

  32. V. S. Kamenetsky, A. S. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks,” J. Petrol. 42 (4), 655–671 (2001).

    Article  Google Scholar 

  33. A. Ya. Kanevskii, “Accessory Cr-spinels: indicators of ore specialization of mafic and ultramafic intrusons for nicke and chromium: prospecting aspect,” Geol. Zh. 6, 118–125 (1992).

    Google Scholar 

  34. B. Kettrup, A. Deutsch, and V. L. Masaitis, “Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia,” Geochim. Cosmochim. Acta. 67 (4), 733–750 (2003).

    Article  Google Scholar 

  35. A. Kitakaze, A. Sugaki, H. Itih, and R. Komatsu, “A revision of phase relations in the system Fe–Ni–S from 650 (degrees) to 450 (degrees),” Can. Mineral. 49 (6), 1687–1710 (2011).

    Article  Google Scholar 

  36. T. P. Kohler and G. Brey, “Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications,” Geochim. Cosmochim. Acta 54 (9), 2375–2388 (1990).

    Article  Google Scholar 

  37. M. G. Kopylova and J. K. Russell, “Chemical straticcation of cratonic lithosphere: constraints from the Northern Slave craton, Canada,” Earth Planet. Sci. Lett. 181, 71–87 (2000).

    Article  Google Scholar 

  38. M. G. Kopylova, J. K. Russell, and H. Cookenboo, “Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada,” J. Petrol. 40 (1), 79–104 (1999).

    Article  Google Scholar 

  39. N. A. Krivolutskaya, “Formation of Pt–Cu–Ni deposits in the process of evolution of flood-basalt magmatism in the Noril’sk Region,” Geol. Ore Deposits 53 (4), 309–339 (2011).

    Article  Google Scholar 

  40. I. Kushiro and B. Mysen, “A possible effect of melt structure on the Mg–Fe2+ partitioning between olivine and melt,” Geochim. Cosmochim. Acta 66, 2267–2272 (2002). https://doi.org/10(2002).1016/S0016-7037(01)00835–3

    Article  Google Scholar 

  41. C. Li and E. M. Ripley, “The relative effects of composition and temperature on olivine–liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling,” Chem. Geol. 275 (1–2), 99–104 (2010).

    Article  Google Scholar 

  42. S. B. Lobach-Zhuchenko, N. A. Arestova, A. B. Vrevskii, Yu. S. Egorova, Sh. K. Baltybaev, V. V. Balaganskii, E. S. Bogomolov, L. M. Stepanyuk, and A. V. Yurchenko, “Origin of crystalline schists of the Bug granulite compelx, Ukrainan Shield,” Regional. Geol. Metallogen. 59, 1–12 (2014).

    Google Scholar 

  43. S. B. Lobach-Zhuchenko, T. V. Kaulina, S. K. Baltybaev, V. V. Balagansky, et al., “The long (3.7–2.1 Ga) and multistage evolution of the Bug Granulite–Gneiss Complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample,” In Archaean Cratons—New Insights on Old Rocks, Ed. by J. Halla, M. J. Whitehouse, T. Ahmad, and Z. Bagai, Geol. Soc. London, Spec. Publ. 449 (1), 175–206 (2017).

  44. S. B. Lobach-Zhuchenko, Sh. K. Baltybaev, V. A. Glebovitskii, S. A. Sergeev, K. I. Lokhov, Yu. S. Egorova, V. V. Balaganskii, S. G. Skublov, O. L. Galankina, and L. M. Stepanyuk, “U–Pb SHRIMP II Age and Origin of Zircon from Lhertzolite of the Bug Paleoarchean Complex, Ukrainian Shield,” Dokl. Earth Sci. 477 (2), 1391–1396 (2017).

    Article  Google Scholar 

  45. S. B. Lobach-Zhuchenko, Yu. S. Egorova, Sh. K. Baltybaev, V. V. Balaganskii, L. M. Stepanyuk, A. V. Yurchenko, O. L. Galankina, E. S. Bogomolov, and V. V. Sukach, “Peridotites in the Paleoarchean orthogneisses of the Bug granulite-gneiss terranes of the Ukrainian shield: geological position, composition, and genesis,” Evolution of Composition and Isotope Composition of the Precambrian Lithosphere, Ed. by V. A. Glebovitsky and Sh. K. Baltybaeva, (Izdatelsko-poligraficheskaya assotsiatsiya Vysshikh uchebnykh zavedenii, St. Petersburg, 2018a), pp. 164–192 [in Russian].

  46. S. B. Lobach-Zhuchenko, S. G. Skublov, Yu. S. Egorova, D. V. Prishchepenko, and O. L. Galankina, “Composition and structure of zircon from harburgite inclusion in the Bug Complex, Ukrainian Shield,” Zap. Ross. Mineral. O-va 147 (6), 22–40 (2018b).

    Google Scholar 

  47. S. B. Lobach-Zhuchenko, Ju. S. Egorova, S. G. Scublov, and V. V. Sukach, “Iron- and nickel enriched olivine from phlogopite harzburgite of the Bug granulite complex (Ukrainian Shield),” Mineral. J. (Ukraine),” 43 (1), 16–24 (2021).

    Article  Google Scholar 

  48. S. B. Lobach-Zhuchenko, T. V. Kaulina, and Yu. S. Egorova, “Traces of the Archean impact events in the Bug granulite-gniess complex of the Ukrainian shield,” Tr. Fersman. Nauchn. Sessii GI KNTs RAN 18, 275–281 (2021a).

    Google Scholar 

  49. S. B. Lobach-Zhuchenko, M. O. Anosova, A. V. Yurchenko, and O. L. Galankina, “Distribution of moderately and high-siderophile elements in sulfides as a basis for reconstructing the evolution of the Archean harzburgite of the Bug Complex, Ukrainian Shield,” Geol. Ore Deposits 63 (3), 239–256 (2021b).

    Article  Google Scholar 

  50. S. B. Lobach-Zhuchenko, Sh. K. Egorova Yu.S. Baltybaev, S. A. Sergeev, T. V. Kaulina, and T. E. Saltykova, “Stages of Paleoarchean to Paleoproterozoic basic-ultrabasic magmatism in the Sarmatian caton,” Russ. Geol. Geophys. 63 (3), 225–244 (2022).

    Article  Google Scholar 

  51. R. R. Loucks, “A precise olivine-augite Mg–Fe-exchange geothermometer,” Contrib. Mineral. Petrol. 125 (2–3), 140–150 (1996).

    Article  Google Scholar 

  52. A. S. Mekhonoshin, T. B. Kolotilina, A. A. Doroshkov, and E. E. Pikiner, “Compositional variations of Cr-spinel in high–Mg intrusions of the Primorsky Ridge (Western Baikal Region, Russia),” Minerals. 10 (7), 608 (2020).

    Article  Google Scholar 

  53. J. Mercier, “Single-pyroxene thermobarometry,” Tectonophysics 70, 1–37 (1980).

    Article  Google Scholar 

  54. J. F. Molina, J. A. Moreno, A. Castro, C. Rodriguez, and G. B. Fershtater, “Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning,” Lithos 232, 286–305 (2015).

    Article  Google Scholar 

  55. Y. Niu, M. Wilson, E. R. Humphrteys, and M. J. O’Hara, “The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications,” J. Petrol. 52 (7–8), 1443–1468 (2011).

    Article  Google Scholar 

  56. H. St.C. O’Neill and V. J. Wall, “The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle,” J. Petrol. 28, 1169–1191 (1987).

    Article  Google Scholar 

  57. H. Palme and H. S. O’Neill, “Cosmochemical estimates of mantle composition,” In Treatise of Geochemistry 2. Mantle and Core, Ed. by H. D. Holland and K. K. Turekian (Elsevier Science, 2003), pp. 1–38.

    Google Scholar 

  58. D. Pearson and N. Wittig, “Formation of Archaean continental lithosphere and its diamonds: the root of the problem,” J. Geol. Soc. 165, 895–914 (2008).

    Article  Google Scholar 

  59. D. G. Pearson, D. Canil, and S. B. Shiery, “Mantle samples included in volcanic rocks: xenoliths and diamonds,” In Treatise of Geochemistry 2. Mantle and Core, Ed. by H. D. Holland and K. K. Turekian (Elsevier Science, 2003), pp. 172–278.

    Google Scholar 

  60. A. Polat, P. W. U. Appel, B. Fryer, et al., “Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin,” Precambrian Res. 175, 87–11 (2009).

    Article  Google Scholar 

  61. M. Portnyagin, R. Almeev, S. Matveev, and F. Holtz, “Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma,” Earth Planet. Sci. Lett. 272 (3–4), 541–552 (2008).

    Article  Google Scholar 

  62. D. Prelevic and S. F. Foley, “Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites,” Earth Planet. Sci. Lett. 256 (1–2), 120–135 (2007).

    Article  Google Scholar 

  63. D. Prelevic, D. E. Jacob, and S. F. Foley, “Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere,” Earth Planet. Sci. Lett. 362, 187–197 (2013).

    Article  Google Scholar 

  64. E. V. Pushkarev, S. L. Votyakov, I. S. Chashchukhin, and E. V. Kislov, “Olivine–chromspinel oxythermobarometry of ultramafic rocks of the Ioko–Dovyren layered massif,” Dokl. Earth Sci. 395 (1), 266–270 (2004).

    Google Scholar 

  65. K. Putirka, “Thermometers and barometers for volcanic systems,” In: Minerals, Inclusions and Volcanic Processes, Ed. by K. Putirka and F. Tepley, Rev. Mineral. Geochem., Mineral. Soc. Am. 69, 61–120 (2008).

  66. F. J. M. Rietmeijer, “Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: a re-evaluation,” Mineral Mag. 47, 143–151 (1983).

    Article  Google Scholar 

  67. A. B. E. Rocholl, K. Simon, K. P. Jochum, et al., “Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE,” Geostand. Geoanalyt. Res. 21 (1), 101–114 (1997).

    Article  Google Scholar 

  68. P. L. Roeder and R. F. Emslie, “Olivine-liquid equilibrium,” Contrib. Mineral. Petrol. 29, 275–289 (1970).

    Article  Google Scholar 

  69. R. L. Rudnick, W. F. McDonough, and A. Orpin, “Northern Tanzanian peridotite xenoliths: a comparison with kaapvaal peridotites and inferences on metasomatic interactions,” Proc. Fifth International Kimberlite Conference (1994), 336–353.

  70. I. D. Ryabchikov, “High NiO content in mantle-derived magmas as evidence for material transfer from the Earth’s core,” Dokl. Earth Sci. 389A (3), 437–439 (2003).

    Google Scholar 

  71. I. D. Ryabchikov, L. N. Kogarko, and I. P. Solovova, “Physicochemical conditions of magma formation at the base of the Siberian Plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui Province,” Petrology 17 (3), 287–299 (2009).

    Article  Google Scholar 

  72. L. V. Sazonova, A. A. Nosova, and A. V. Kargin, et al., “Olivine from the Pionerskaya and V. Grib Kimberlite Pipes, Arkhangelsk diamond province, Russia: types, composition, and origin,” Petrology 23 (3), 227–258 (2015).

    Article  Google Scholar 

  73. P. Sengupta, S. Dasgupta, P. K. Bhattacharya, and M. Mukherjee, “An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks,” J. Metamorph. Geol. 8 (2), 191–197 (1990).

    Article  Google Scholar 

  74. N. P. Shcherbak, G. V. Artemenko, I. M. Lesnaya, A. N. Ponomarenko, and L. V. Shumlyanskii, Early Precambrian Geochronology of the Ukrainian Shield. Proterozoic (Naukova dumka, Kiev, 2008).

  75. D. S. Shteinberg and M. V. Lagutina, Carbon in Ultramafic and Mafic Rocks (Nauka, Moscow, 1984) [in Russian].

  76. L. Shumlyanskyy, S. A. Wilde, A. A. Nemchin, S. Claesson, K. Billstrom, and B. Baginski, “Eoarchean rock association in the Dniester–Bouh Domain of the Ukrainian Shield: a suite of LILE-depleted enderbites and mafic granulites,” Precambrian Res. 352, 106001 (2021).

    Article  Google Scholar 

  77. N. S. C. Simon, R. W. Carlson, G. R. Davies, G. M. Nowell, and D. G. Pearson, “Os-Sr-Nd-Hf isotope evidence for the ancient depletion and subsequent multi–stage enrichment history Kaapvaal cratonic lithosphere,” 8th International Kimberlite Conference Long Abstract (2003), 0117.

  78. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, and N. T. Arndt, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  79. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauka, Novosibirsk, 1974).

    Google Scholar 

  80. E. G. Sorokin, O. I. Yakovlev, E. N. Slyuta, M. V. Gerasimov, M. A. Zaitsev, V. D. Shcherbakov, K. M. Ryazantsev, and S. P. Krasheninnikov, “Experimental modeling of a micrometeorite impact on the Moon,” Geochem. Int. 58 (2), 113–127 (2020).

    Article  Google Scholar 

  81. E. M. Sorokin, O. I. Yakovlev, E. N. Slyuta, Gerasimov E. N. M.V., M. A. Zaitsev, V. D. Shcherbakov, K. M. Ryazantsev, and S. P. Krasheninnikov, “Experimental modeling of a micrometeorite impact on the Moon,” Geochem. Int. 65 (2), 113–127 (2020).

    Article  Google Scholar 

  82. R. Hart Stanley and Karleen E. Davis, “Nickel partitioning between olivine and silicate melt,” Earth Planet. Sci. Lett. 40 (2), 203–219 (1978).

    Article  Google Scholar 

  83. T. Sugawara, “Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid,” J. Geophys. Res. 105 (B4), 8457–8472 (2000).

    Article  Google Scholar 

  84. S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  85. S. A. Svetov, A. V. Stepanova, S. Yu. Chazhengina, E. N. Svetova, Z. P. Rybnikova, A. I. Mikhailova, A. S. Paramonov, V. L. Utitsyna, M. V. Ekhova, and V. S. Kolodei, “Precision (ICP-MS, LA-ICP-MS) analysis of composition of rocks and minerals: method and assessment of measurement accuracy by the example of Early Precambrian mafic complexes,” Tr. Karel’sk. Nauchn. Ts. RAS 7, 54–73 (2015).

    Google Scholar 

  86. E. Takahashi, “Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: compositional dependence of partition coefficient,” Geochim. Cosmochim. Acta. 42 (12), 1829–1844 (1978).

    Article  Google Scholar 

  87. W. R. Taylor, M. Kamperman, and R. Hamilton, “New thermobarometer and oxygen fugacity sensor calibrations for ilmenite- and chromian spinel-bearing peridotitic assemblages,” Proc. 7th Int. Kimb. Conf. (Red. Roof. Design, Cape Town, 1998), pp. 891–892.

  88. J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60 (19), 3713–3733 (1996).

    Article  Google Scholar 

  89. Z. H. Wan, L. A. Coogan, and D. Canil, “Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer,” Am. Mineral. 93 (7), 1142–1147 (2008).

    Article  Google Scholar 

  90. G. Witt-Eickschen and H. S.C. O’Neill, “The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite,” Chem. Geol. 221 (1–2), 65–101 (2005).

    Article  Google Scholar 

  91. O. I. Yakovlev and A. Yu. Lyul, “Geochemistry of trace elements in the impact process,” Geokhimiya, No. 3, 323–337 (1992).

    Google Scholar 

  92. O. I. Yakovlev, D. D. Badyukov, V. S. Fainberg, N. N. Baulin, N. N. Pilyugin, and S. G. Tikhomirov, “Impact interaction of iron meteorite with silicate target,” Geokhimiya, No. 6, 796–805 (1991).

    Google Scholar 

  93. O. I. Yakovlev, M. V. Gerasimov, and Y. P. Dikov, “Estimation of temperature conditions for the formation of HASP and GASP glasses from the lunar regolith,” Geochem. Int. 49 (3), 213–223 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to B.A. Bazylev (GEOKHI RAS) and anonymous reviewer for helpful comments and questions rised, the work on which significantly improved the manuscript. We are also grateful to V.V. Balagansky (Geological Institute, Kola Science Center, Russian Academy of Sciences) and L.M. Stepanyuk (Institute of Geochemistry, Mineralogy and Ore Formation, NAN of Ukraine) for the assistance in field works. O.L. Galankina (IPGG RAS) is thanked for analysis of the composition of rock-forming minerals.

Funding

The work was made in the framework of the Government-Financed Project nos. FMUW-2022-0004, FMUW-2022-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Lobach-Zhuchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobach-Zhuchenko, S.B., Baltybaev, S.K., Egorova, Y.S. et al. Archean Phlogopite Peridotite from Gneissic Enderbites of the Bug Granulite–Gneiss Terrane (Ukrainian Shield): Compositional Features and Possible Mechanisms of its Formation. Geochem. Int. 61, 593–629 (2023). https://doi.org/10.1134/S001670292306006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292306006X

Keywords:

Navigation