Skip to main content
Log in

Sodalite: Spectroscopic and Thermochemical Investigations

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Two sodalite samples (sample I is Na8Al6Si6O24Cl2⋅0.4H2O from the Kovdor alkaline ultramafic massif with carbonatites in the Murmansk region, Russia, and sample II is Na8Al6Si6O24Cl2⋅0.2H2O from the Bayan Kol nepheline syenite and miaskite massif in the Republic of Tyva) were studied by thermal and electron-microprobe analyses, powder X-ray diffraction, photoluminescence, and by IR, Raman, and ESR spectroscopy. Solution melt calorimetry was applied to determine the enthalpy of formation from elements for water-bearing sodalite samples: −13536 ± 10 (I) and −13503 ± 19 (II) kJ/mol. The enthalpy of formation of sodalite of the theoretical composition Na8Al6Si6O24Cl2 was evaluated at ΔfH0(298.15 K) = −13446 ± 11 kJ/mol. The data obtained on the enthalpy of formation of sodalite and literature data on its S0(298.15 K) were used to calculate the standard Gibbs energies of formation of anhydrous and of water-bearing sodalite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. D. Andreeva, V. A. Kononova, E. V. Sveshnikova, and R. M. Yashina, Igneous Rocks. Volume 2. Alkaline Rocks (Nauka, Moscow, 1984) [in Russian].

  2. H. Annersten and A. Hassib, “Blue sodalite,” Can. Mineral. 17, 39–46 (1979).

    Google Scholar 

  3. S. Antao and I. Hassan, “Thermal analyses of sodalite, tugtupite, danalite and helvite,” Can. Mineral. 40, 163–172 (2002).

    Article  Google Scholar 

  4. M. C. Barnes, J. Addai-Mensah, and A. R. Gerson, “A methodology for quantifying sodalite and cancrinite phase mixtures and the kinetics of the sodalite to cancrinite phase transformation,” Micropor. Mesopor. Mater. 31, 303–319 (1999).

    Article  Google Scholar 

  5. B. E. Borutskii, Rock-Forming Minerals of High-Alkali Complexes (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  6. N. F. Cano, A. R. Blak, and S. Watanabe, “Correlation between electron paramagnetic resonance and thermoluminescence in natural sodalite,” Phys. Chem. Miner. 37, 57–64 (2010).

    Article  Google Scholar 

  7. N. F. Cano, A. R. Blak, J. S. Ayala-Arenas, and S. Watanabe, “Mechanisms of TL for production of the 230°C peak in natural sodalite,” J. Lumin. 131, 165–168 (2011).

    Article  Google Scholar 

  8. N. V. Chukanov, M. F. Vigasina, N. V. Zubkova, I. V. Pekov, C. Schäfer, A. V. Kasatkin, V. O. Yapaskurt, and D. Yu. Pushcharovsky, “Extra-framework content in sodalite–group minerals: complexity and new aspects of its study using infrared and Raman spectroscopy,” Mineralogy 10, # 363 (2020).

  9. N. V. Chukanov, R. Yu. Shendrik, M. F. Vigasina, I. V. Pekov, A. N. Sapozhnikov, V. D. Shcherbakov, and D. A. Varlamov, “Crystal chemistry, isomorphism, and thermal conversions of extra-framework components in sodalite–group minerals,” Minerals 12, # 887 (2022a).

  10. N. V. Chukanov, N. V. Zubkova, I. V. Pekov, R. Yu. Shendrik, D. A. Varlamov, M. F. Vigasina, D. I. Belakovskiy, S. N. Britvin, V. O. Yapaskurt, and D. Yu. Pushcharovsky, “Sapozhnikovite, Na8(Al6Si6O24)(HS)2, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula,” Mineral. Mag. 86, 49–59 (2022b).

    Article  Google Scholar 

  11. R. A. Denisov, V. P. Denks, A. E. Dudelzak, V. S. Osminin, and T. V. Ruus, “Optically erasable coloration and luminescence of sodalites,” Zh. Phys. Chem. 27 (1), 149–154 (1977).

    Google Scholar 

  12. M. Dumańska-Słowik, W. Heflik, A. Pieczka, and M. Sikorska, “The transformation of nepheline and albite into sodalite in pegmatitic mariupolite of Oktiabrski Massif (SE Ukraine),” Spectrachim. Acta. Part A: Mol. Biomol. Spectr. 150, 837–845 (2015).

    Article  Google Scholar 

  13. C. Günther, H. Richter, I. Voigt, A. Michaelis, H. Tzscheutschler, R. Krause-Rehberg, and J. M. Serra, “Synthesis and characterization of a sulfur containing hydroxyl sodalite without sulfur radicals,” Micropor. Mesopor Mater. 214, 1–7 (2015).

    Article  Google Scholar 

  14. A. Hassib, O. Beckman, and H. Annersten, “Photochromic properties of natural sodalite,” J. Phys. D: Appl. Phys. 10, 771–777 (1977).

    Article  Google Scholar 

  15. K. Hettmann, T. Wenzel, M. Marks, and G. Markl, “The sulfur speciation in S-bearing minerals: New constraints by combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals,” Am Mineral. 97, 1653–1661 (2012).

    Article  Google Scholar 

  16. W. G. Hodgson, J. S. Brinen, and E. F. Williams, “Electron spin resonance investigation of photochromic sodalities,” J. Chem. Physics. 47 (10), 3719–3723 (1967).

    Article  Google Scholar 

  17. G. Yu. Ivanyuk and V. N. Yakovenchuk, Minerals of Kovdor (Kolskii NTs RAN, Apatity, 1997) [in Russian].

  18. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, no. 12, 1811–1825 (1979).

  19. I. A. Kiseleva, L. P. Ogorodova, Yu. I. Sidorov, and I. L. Khodakovskii, “Thermodynamic properties of alkaline feldspars,” Geokhimiya, No. 3, 406–413 (1990).

    Google Scholar 

  20. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites—heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  21. L. N. Kogarko, Problems of Genesis of Agpaitic Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. N. Komada, E. F. Westrum, B. S. Hemingway, M. Yu. Zolotov, Yu. V. Semenov, I. L. Khodakovsky, and L. M. Anovitz, “Thermodynamic properties of sodalite at temperatures from 15 K to 1000 K,” J. Chem. Thermodynam. 27, 1119–1132 (1995).

    Article  Google Scholar 

  23. A. R. Kotelnikov, L. V. Zhornyak, and Z. A. Kotel’nikova, “Distribution of sulfur between sodalite and hydrothermal fluid: an experimental study,” Geochem. Int. 34 (11), 975–979 (1996).

    Google Scholar 

  24. S. Lin, M. Wang, Ya. Hao, K. Zhang, Yu. Li, and D. Yang, “Synthesis, structure and thermal stability of iodine–contained sodalities Na8(AlSiO4)6Cl2xIx (x = 0–2) for 129I immobilization,” J. Alloys Compd. 908, # 164617 (2022).

  25. S. D. McLaughlan and D. J. Marshall, “Paramagnetic resonance of F-type centers in photochromic sodalities,” Phys.Lett. 32A, 343–344 (1970).

    Article  Google Scholar 

  26. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovskii, Reference Book of Thermodynamic Values (for Geologists) (Atomzidat, Moscow, 1971) [in Russian].

    Google Scholar 

  27. I. Norrbo, P. Gluchowski, P. Paturi, J. Sinkkonen, and M. Lastusaari, “Persistent luminescence of tenebrescent Na8Al6Si6O24(Cl,S)2,” Inorg. Chem. 54, 7717–7724 (2015).

    Article  Google Scholar 

  28. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta. 403, 251–256 (2003).

    Article  Google Scholar 

  29. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Enthalpy of formation of talc Mg3[Si4O10](OH)2 according to dissolution calorimetry,” Russ. J. Phys. Chem. 85 (9), 1489–1491 (2011).

    Article  Google Scholar 

  30. R. C. Peterson, “The structure of hackmanite, a variety of sodalite, from Mont St-Hilaire, Quebec,” Can.Mineral. 21, 549–552 (1983).

    Google Scholar 

  31. P. S. Pizani, M. C. Terrile, H. A. Farach, and C. R. Poole, “Color centers in sodalite,” Am. Mineral. 70, 1186–1192 (1985).

    Google Scholar 

  32. V. Yu. Prokof’ev and N. E. Gordina, “Preparation of granulated LTA and SOD zeolites from mechanically activated mixtures of metakaolin and sodium hydroxide,” Appl. Clay Sci. 101, 44–51 (2014).

    Article  Google Scholar 

  33. T. A. Radomskaya, E. V. Kaneva, R. Yu. Shendrik, L. F. Suvorova, and N. V. Vladykin, “Sulfur-bearing sodalite–hackmanite in the alkaline pegmatites of the Inagli massif (Aldan shield): crystal chemical features, photochromism, and luminescence,” Zap. Ross. Mineral. O-va 149 (2), 42–54 (2020).

    Google Scholar 

  34. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U S Geol. Surv. Bull., No. 2131, (1995).

  35. A. A. Rogozhin, B. S. Gorobets, and S. V. Ryabenko, “Nature of luminescence of haloid and haloid-bearing minerals,” Mineral. Zh. 4 (2), 45–52 (1982).

    Google Scholar 

  36. Z. D. Sharp, G. R. Helffrich, S. R. Bohlen, and E. J. Essene, “The stability sodalite in the system NaAlSiO4–NaCl,” Geochim. Cosmochim Acta 53, 1943–1954 (1989).

    Article  Google Scholar 

  37. A. Škvarlová, M. Kanuchová, L. Kozáková, E. Valušová, and M. Holub, “Preparation and characterization of ultramarine blue pigments from fly ash by using the X-ray photoelectron spectroscopy (XPS) for the determination of chemical states of sulphur in chromophores,” Micropor. Mesopor. Mater. 284, 283–288 (2019).

    Article  Google Scholar 

  38. A. N. Tarashchan, Luminescence of Minerals (Naukova dumka, Kiev, 1978) [in Russian].

    Google Scholar 

  39. A. N. Tarashchan, A. N. Platonov, L. V. Bershov, and V. P. Belichenko, Constitution and Properties of Minerals (Naukova dumka, Kiev, 1970), Vol. 4, pp. 63–65 [in Russian].

    Google Scholar 

  40. M. J. Taylor, D. J. Marshall, and H. Evans, “Infra-red spectra of photochromic sodalities,” J. Phys. Chem. Solids. 32, 2021–2026 (1971).

    Article  Google Scholar 

  41. E. R. Vance, D. J. Gregg, I. Karatchevtseva, J. Davis, and M. Ionescu, “He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl,” J. Nucl. Mater. 453, 307–312 (2014).

    Article  Google Scholar 

  42. S. C. Zilio and V. S. Bagnato, “Infrared spectra of natural sodalite,” J. Chem. Phys. 88, 1373–1376 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Gritsenko or L. P. Ogorodova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gritsenko, Y.D., Eremina, E.N., Vigasina, M.F. et al. Sodalite: Spectroscopic and Thermochemical Investigations. Geochem. Int. 61, 735–743 (2023). https://doi.org/10.1134/S0016702923060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923060046

Keywords:

Navigation