Skip to main content
Log in

Sources of Metals for the Rudny Altai VMS Deposits: Results of High-Precision MC-ICP-MS Lead Isotope Study

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The Rudny Altai metallogenic province, which is concordant to the structures of the eponymous terrane and located in the Central Asian orogenic belt (CAOB), is one of the largest volcanic massive sulfide (VMS) provinces in the world. Lead isotopic composition of galena (61 samples in total) was measured for the first time with high accuracy (±0.02%, SD) for 20 sulfide base metal deposits representing the dominant Kuroko type in the Rudny Altai. They are enclosed in the Early–Middle Devonian volcano-sedimentary sequence in association with volcanic rocks of the bimodal basalt-rhyolite series. We studied the large and superlarge deposits of this type: Ridder-Sokol’noe, Tishinskoe, Novo-Leninogorskoe, Zyryanovskoe, Zmeinogorskoe, and Korbalikha. In the province, the isotope ratios 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb vary within narrow limits. At average values of 206Pb/204Pb = 17.820, 207Pb/204Pb = 15.517 and 208Pb/204Pb = 37.669, the root mean square variations (variation coefficient, %) are 0.22, 0.038 and 0.063% respectively. Even more homogeneous composition is observed within ore districts of the province (0.054, 0.012 and 0.020%) and especially within deposits (0.025, 0.010 and 0.013%), where the scale of variations of lead isotope ratios reaches their measurement error (±0.02%). The lead isotopic composition in the province shows no isotopic “signatures” of juvenile (asthenospheric) origin. The evolutionary characteristics of the lead source (its depletion in uranium, the old model Pb-Pb age, and moderate values of the µ2 parameter) together with the persistent isotopic composition allow us to regard the lithospheric mantle consisting of metasomatized and recycled rocks as its source. This source was of regional significance, chemically (U-Th-Pb) and isotopically (Pb-Pb) homogeneous, and common for all deposits. Among other CAOB terranes, including the Chinese Altai, the 206Pb, 207Pb and 208Pb isotopes in the ore lead of the Rudny Altai terrane have the least radiogenic composition. The previously noted (Chiaradia et al., 2006) systematic decrease of radiogenic isotope content in the lead of ores and rocks of the CAOB terranes from the southwest to the northeast correlates with a decrease in the lower crustal contribution in the same direction in their composition, where fragments and blocks of Precambrian crust are also involved. The peculiarity of the Pb isotopic composition of the Rudny Altai terrane is largely determined by the absence of Precambrian crustal blocks in its composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. νi/204—variation coefficient or root mean square scatter expressed in % for lead isotope ratios, where i are isotopes 206Pb, 207Pb, 208Pb.

  2. Straight line in the 206Pb/204Pb–207Pb/204Pb diagram unites galena composition points, the lead of which evolved in the U‑Pb system of a single source at different U/Pb values and was simultaneously separated from a source during ore genesis.

  3. This belt of sulfide–base metal deposits also comprises Snegirikha small ore district, the deposits of which were not studied in this work.

REFERENCES

  1. N. N. Akinfiev and I. V. Vikentyev, “Physicochemical modeling of ore formation at the gold and volcanogenic massive sulfide deposits in the Northern Urals,” Geochem. Int. 58 (13), 1437–1442 (2020).

    Article  Google Scholar 

  2. V. S. Aksenov, L. N. Grinenko, and V. A. Grinenko, “Lead isotopes and genetic problems of sulfide ores of the base-metal deposits of the Zyryanovsk district,” in Genetic Problems of Sulfide–Base Metal Deposits of Rudny Altai, Ed. by A. A. Abdulin (Nauka, Alma-Ata, 1977), pp. 153–158 [in Russian].

  3. E. E. Amplieva, I. V. Vikentev, V. S. Karpukhina, and N. S. Bortnikov, “The role of magmatogene fluid in the formation of the Talgan copper–zinc–pyritic deposit, Southern Urals,” Dokl. Earth Sci. 423A (9), 1427–1430 (2008).

    Article  Google Scholar 

  4. A. Audétat, “The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential,” Econ. Geol. 114 (6), 1033–1056 (2019).

    Article  Google Scholar 

  5. V. V. Avdonin, A. L. Dergachev, and N. N. Shatagin, “Petrochemical zoning of basalt–rhyolite formation of Rudny Altai,” Vestn. Mosk. Gos. Univ., Ser. 4, Geol., No. 4, 18–24 (1987).

  6. Kh. A. Bespaev, N. V. Polyanskii, G. D. Ganzhenko, B. A. Dyachkov, and O. P. Evtushenko, Geology and Metallogeny of Southwestern Altai (within Territories of Kazakhstan and China), (Ғylym, Almaty, 1997) [in Russian].

    Google Scholar 

  7. E. V. Bibikova, T. I. Kirnozova, I. K. Kozakov, A. B. Kotov, L. A. Neimark, B. M. Gorokhovskii, and I. K. Shuleshko, “Base metal complexes of the southern slope of the Mongolian and Gobi Altai: results of uranium–lead dating,” Geotektonika, No. 2, 104–112 (1992).

    Google Scholar 

  8. M. M. Buslov, I. Fudzhivara, I. Yu. Safonova, Sh. Okada, and N. N. Semakov, “Structure and evolution of the junction zone of the Rudny Altai and Gorny Altai terranes,” Geol. Geofiz. 41 (3), 383–397 (2000).

    Google Scholar 

  9. M. M. Buslov, T. Vatanabe, L. V. Smirnova, I. Fudzhivara, K. Ivata, N. N. Semakov, A. V. Travin, A. P. Kiryanova, and D. A. Kokh, “Role of strike-slip faulting in Late Paleozoic–Early Mesozoic tectonics and geodynamics of the Altai–Sayan and East Kazakhstan regions,” Russ. Geol. Geophys. 44 (1–2), 47–71 (2003).

    Google Scholar 

  10. V. M. Chekalin and B. A. Dyachkov, “Rudny Altai base-metal belt: localization of massive sulfide mineralization,” Geol. Ore Deposits 55 (6), 438–454 (2013).

    Article  Google Scholar 

  11. I. V. Chernyshev, V. A. Lebedev, and M. M. Arkelyants, “K-Ar dating of Quaternary volcanics: methodology and interpretation of results,” Petrology 14 (1), 62–80 (2006).

    Article  Google Scholar 

  12. I. V. Chernyshev, A. V. Chugaev, and K. N. Shatagin, “High-precision Pb isotope analysis by multicollector-ICP-mass-spectrometry using 205Tl/203Tl normalization: optimization and calibration of the method for the studies of Pb isotope variations,” Geochem. Int. 45 (11), 1065–1076 (2007).

    Article  Google Scholar 

  13. I. V. Chernyshev, I. V. Vikentyev, A. V. Chugaev, K. N. Shatagin, and V. P. Moloshag, “Sources of material for massive sulfide deposits in the Urals: evidence from the high-precision MC-ICP-MS isotope analysis of Pb in Galena,” Dokl. Earth Sci. 418 (4), 178–183 (2008).

    Article  Google Scholar 

  14. M. Chiaradia, D. Konopelko, R. Seltmann, and R. A. Cliff, “Lead isotope variations across terrane boundaries of the Tien Shan and Chinese Altay,” Mineral. Deposita 41 (5), 411–428 (2006).

    Article  Google Scholar 

  15. A. V. Chugaev and I. V. Chernyshev, “Pb–Pb isotopic systematics of orogenic gold deposits of the Baikal–Patom fold belt (Northern Transbaikalia, Russia) and estimation of the role of neoproterozoic crust in their formation,” Geochem. Int. 55 (11), 1010–1021 (2017).

    Article  Google Scholar 

  16. A. V. Chugaev, I. V. Chernyshev, N. S. Bortnikov, V. A. Kovalenker, G. D. Kiseleva, and V. Yu. Prokof’ev, “Lead isotope ore provinces of Eastern Transbaikalia and their relationships to regional structures: results of high-precision MC-ICP-MS study of Pb isotopes,” Geol. Ore Deposits 55 (4), 245–255 (2013).

    Article  Google Scholar 

  17. I. V. Chernyshev, A. V. Chugaev, N. S. Bortnikov, G. N. Gamyanin, and A. V. Prokopev, “Pb isotopic composition and metal sources of Au and Ag deposits of the South Verkhoyansk Region (Yakutia, Russia) according to high-precision MC-ICP-MS Data,” Geol. Ore Deposits 60 (5), 398–417 (2018).

    Article  Google Scholar 

  18. A. V. Chugaev, I. V. Chernyshev, V. V. Ratkin, V. G. Gonevchuk, and O. A. Eliseeva, “Contribution of crustal and mantle sources to genesis of Sn, B and Pb-Zn deposits in South Sikhote-Alin subprovince (Russian Far East): evidence from high–precision MC-ICP–MS lead isotope study,” Ore Geol. Rev. 125, 103683 (2020).

    Article  Google Scholar 

  19. A. V. Chugaev, E. O. Dubinina, I. V. Chernyshev, A. V. Travin, S. A. Kossova, Yu. O. Larionova, A. A. Nosova, O. Yu. Plotinskaya, T. I. Oleinikova, and A. S. Sadasyuk, “Sources and Age of the gold mineralization of the Irokinda Deposit, Northern Transbaikalia: evidence from Pb, S, Sr, and Nd isotope-geochemical and 39Ar–40Ar geochronological data,” Geochem. Int. 58, 1208–1227 (2020).

    Article  Google Scholar 

  20. A. V. Chugaev, V. A. Vanin, I. V. Chernyshev, K. N. Shatagin, I. V. Rassokhina, and A. S. Sadasyuk, “Lead isotope systematics of the orogenic gold deposits of the Baikal–Muya Belt (Northern Transbaikalia): contribution of the subcontinental lithospheric mantle in their genesis,” Geochem. Int. 60, 1352–1379 (2022).

    Article  Google Scholar 

  21. K. M. Cohen, S. C. Finney, P. L. Gibbard, and J. -X. Fan, “The ICS International Chronostratigraphic Chart,” Episodes 36, 199–204 (2019).

    Article  Google Scholar 

  22. A. L. Dergachev, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (MGU, Moscow, 2010).

  23. N. L. Dobretsov, N. A. Berzin, and M. M. Buslov, “Opening and tectonic evolution of the Paleo-Asian ocean,” Int. Geol. Rev. 37 (4), 335–360 (1995).

    Article  Google Scholar 

  24. V. N. Dubatolov, Yu. A. Dubatolova, M. S. Kozlov, and N. Ya. Spasskii, Biostratigraphy of the Lower and Middle Devonian of Rudny Altai (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  25. N. I. Eremin, A. L. Pozdnyakova N.V. Dergachev, and N. E. Sergeeva, “Large and superlarge volcanic-associated massive sulfide deposits,” Geol. Ore Deposits 46 (2), 91–107 (2004).

    Google Scholar 

  26. E. I. Filatov, “Basalt—rhyolite formations with sulfide—base metal mineralization with reference to Rudny Altai,” in Geochemical and Metallogenic Specialization of StructuralCompositional Complexes (MPR RF, IMGRE, Geokart, RosGEO, Moscow, 1999), pp. 337–348 [in Russian].

  27. E. I. Filatov and E. P. Shirai, “Paleosystems of island arcs of the Zaisan fold area,” Dokl. Akad. Nauk SSSR 225 (1), 172–175 (1975).

    Google Scholar 

  28. J. M. Franklin, H. L. Gibson, I. R. Jonasson, and A. G. Galley, “Volcanogenic massive sulfide deposits,” Econ. Geol. 100, 523–560 (2005).

    Google Scholar 

  29. G. D. Ganzhenko, M. A. Yudovskaya, and I. V. Vikentyev, “Gold–base-metal mineralization of the Ridder-Sokolnoe deposit at Rudny Altai, Eastern Kazakhstan,” Mineralogiya 4 (1), 8–34 (2018).

    Google Scholar 

  30. I. V. Gaskov, Doctoral Dissertation in Geology and Mineralogy (IG SO RAN, Novosibirsk, 2002) [in Russian].

  31. I. V. Gaskov, “Evolution of the sulfide ore-magmatic systems in the island-arc settings of Rudny Altai and southern Urals,” Litosfera, No. 2, 17–39 (2015).

    Google Scholar 

  32. V. N. Gavrilets, “Paleovolcanic structure and lithological-facies control at the Zyryanovsk deposit (Rudny Altai),” Geol. Rudn. Mestorozhd., No. 1, 40–47 (1986).

  33. V. S. Gladkikh, “Geochemistry of Devonian volcanogenic rocks of the southwestern Alei anticlinorium,” Otechestvennaya Geol., No. 11, 77–83 (1992).

  34. State Geological Map of the Russian Federation on a Scale 1 : 200 000. Gorno-Altai Series. Sheet M-44–IV. (Rubtsovsk). Explanatory Note, Ed. by S. I. Fedak, Yu. A. Turkin, P. F. Selin, et al., (Mosk filial VSEGEI, Moscow, 2019) [in Russian].

  35. A. V. Grebennikov and A. I. Khanchuk, “Pacific–type transform and convergent margins: igneous rocks, geochemical contrasts and discriminant diagrams,” Int. Geol. Rev. 63 (5), 601–629 (2021). https://doi.org/10.1080/00206814.2020.1848646

    Article  Google Scholar 

  36. W. L. Griffin, E. A. Belousova, C. O’Neill, et al. “The world turns over: Hadean–Archean crust–mantle evolution,” Lithos 189, 2–15 (2014).

    Article  Google Scholar 

  37. I. F. Grigorev, “Main features of Rudny Altai and Kalba,” in Bol’shoi Altai (Izd–vo AN SSSR, Moscow, 1934), Vol. 1, pp. 37–51 [in Russian].

    Google Scholar 

  38. Ya. M. Gutak, O. V. Murzin, V. A. Zhdanov, V. N. Lyakhnitskii, Z. E. Petrunina, and S. A. Rodygin, “Devonian reference sections of the Rudny Altai and Middle–Upper Devonian boundary,” Guidebook of Field Excursion of 7 th Session of the Devonian Commission of the MSC of Russia in Rudny Altai (Zmeinogorsk, 2000) [in Russian].

  39. B. Harte, P. A. Winterburn, and J. J. Gurney, “Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho,” In: Mantle Metasomatism, Ed. by M. Menzies (Academic Press Inc., London, 1987), pp. 145–220.

    Google Scholar 

  40. C. Herzberg, C. Vidito, and N. A. Starkey, “Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks,” Am. Mineral. 101 (9), 1952–1966 (2016).

    Article  Google Scholar 

  41. T. Holland and J. Blundy, “Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry,” Contrib. Mineral. Petrol. 116, 433–447 (1994).

    Article  Google Scholar 

  42. M. Humayun, L. P. Qin, and M. D. Norman, “Geochemical evidence for excess iron in the mantle beneath Hawaii,” Science 306, 91–94 (2004).

    Article  Google Scholar 

  43. K. P. Jochum, D. B. Dingwell, A. Rocholl, et al., “The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis,” Geostand. Geoanalyt. Res. 24 (1), 87–133 (2000).

    Article  Google Scholar 

  44. K. P. Jochum, B. Stoll, K. Herwig, and M. Willbold, “Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm laser and matrix-matched calibration,” J. Anal. At. Spectrom. 22, 112–121 (2007).

    Article  Google Scholar 

  45. B. S. Kamber, K. D. Collerson, S. Moorbath, and M. J. Whitehouse, “Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust,” Contrib. Mineral. Petrol. 145 (1), 25–46 (2003).

    Article  Google Scholar 

  46. V. S. Kamenetsky, A. S. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks,” J. Petrol. 42 (4), 655–671 (2001).

    Article  Google Scholar 

  47. G. Kamenov, A. W. Macfarlane, and L. Riciputi, “Sources of Pb in the San Cristobal, Pulacayo, and Potosi mining districts, Bolivia, and a reevaluation of regional ore Pb isotope provinces,” Econ. Geol. 97, 573–592 (2002).

    Google Scholar 

  48. G. D. Kamenov, M. R. Perfit, I. R. Jonasson, and P. A. Mueller, “High-precision Pb isotope measurements reveal magma recharge as a mechanism for ore deposit formation: Examples from Lihir Island and Conical seamount, Papua New Guinea,” Chem. Geol. 219 (1–4), 131–148 (2005).

    Article  Google Scholar 

  49. V. S. Karpukhina, V. B. Naumov, and I. V. Vikentyev, “Genesis of massive sulfide deposits in the Verkhneural’sk Ore District, the South Urals, Russia: evidence for magmatic contribution of metals and fluids,” Geol. Ore Deposits 55 (2), 125–144 (2013).

    Article  Google Scholar 

  50. B. Kettrup, A. Deutsch, and V. L. Masaitis, “Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia,” Geochim. Cosmochim. Acta 67 (4), 733–750 (2003).

    Article  Google Scholar 

  51. A. I. Khanchuk, A. V. Grebennikov, and V. V. Ivanov, “Albian–Cenomanian orogenic belt and igneous province of Pacific Asia,” Russ. J. Pac. Geol. 38 (3), 187–219 (2019).

    Article  Google Scholar 

  52. A. Kitakaze, A. Sugaki, H. Itih, and R. Komatsu, “A revision of phase relations in the system Fe–Ni–S from 650 (degrees) to 450 (degrees),” Can. Mineral. 49 (6), 1687–1710 (2011).

    Article  Google Scholar 

  53. T. P. Kohler and G. Brey, “Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications,” Geochim. Cosmochim. Acta 54 (9), 2375–2388 (1990).

    Article  Google Scholar 

  54. M. G. Kopylova and J. K. Russell, “Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada,” Earth Planet. Sci. Lett. 181, 71–87 (2000).

    Article  Google Scholar 

  55. M. G. Kopylova, J. K. Russell, and H. Cookenboo, “Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada,” J. Petrol. 40 (1), 79–104 (1999).

    Article  Google Scholar 

  56. A. M. Kosarev, V. N. Puchkov, I. B. Seravkin, and G. T. Shafigullina, “Geodynamic conditions of volcanism and sulfide formation in the Magnitogorsk megazone in the Late Emsian–Early Eifelian time,” Litosfera 21 (6), 775–804 (2021).

    Google Scholar 

  57. I. K. Kozakov, E. B. Salnikova, A. B. Kotov, V. P. Kovach, and A. N. Didenko, “Age boundaries and geodynamic settings in the formation of crystalline complexes of the eastern segment of the Central Asian Orogenic Belt,” in Tectonic Problems of Central Asia (GEOS, Moscow, 2005), pp. 137–170 [in Russian].

    Google Scholar 

  58. M. S. Kozlov, “Formation conditions of the Rudny Altai metallogenic province,” Geol. Ore Deposits 57 (4), 266–291 (2015).

    Article  Google Scholar 

  59. M. S. Kozlov and V. N. Dubatolov, “Stratigraphy of the Upper Siluarian, Devonian, and Lower Carboniferous deposits of the southwestern Altai,” Geol. Geofiz. 35 (12), 18–36 (1994).

    Google Scholar 

  60. J. D. Kramers and I. N. Tolstikhin, “Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust,” Chem. Geol. 139 (1–4), 75–110 (1997).

    Article  Google Scholar 

  61. N. N. Kruk, “Convergent geochemical features of magmatic associations of transform margins of continents and within-plate large igneous provinces in orogenic belts: reasons and tectonic consequences,” in Geological Processes in Subduction, Collisional, and Sliding of Lithospheric Plates. Proc. 5 th All-Russian Conference with International Participation (DVFU, Vladivostok, 2021), pp. 38–40 [in Russian].

  62. N. N. Kruk, S. N. Rudnev, A. G. Vladimirov, and D. Z. Zhuravlev, “Sm–Nd isotope systematics of granitoids from the Western Altai–Sayan Shear Zone,” Dokl. Earth Sci. 366 (4), 569–571 (1999).

    Google Scholar 

  63. N. G. Kudryavtseva and V. V. Kuznetsov, “Geodynamic Features of the Formation of Non-Ferrous and Noble Metal Deposits of the Great Altai,” Great Altai as the Unique Rare Metal–Gold–Polymetallic Province of Central Asia. Reports of the Geologists of Central Asia Countries (Almaty, 2012), pp. 38–44 [in Russian].

    Google Scholar 

  64. M. L. Kuibida, “Age and composition of rhyolites of the Melnichno–Sosnovsky volcanic complex (Rudny Alai),” in Petrology of Magmatic and Metamorphic Complexes. Proc. 10 th All-Russian Petrographic Conference with International Participation (Tomsk. Ts. Nauchno-Tekhn. Informatsii, Tomsk, 2018), pp. 219–224 [in Russian].

  65. M. L. Kuibida, “Basaltic volcanism of island-arc–back-arc basin system (Altai active margin),” Russ. J. Pac. Geol. 13 (3), 297–310 (2019).

    Article  Google Scholar 

  66. M. L. Kuibida, N. N. Kruk, A. G. Vladimirov, N. V. Polyanskii, and I. V. Nikolaeva, “U–Pb isotopic age, composition, and sources of the plagiogranites of the Kalba Range, Eastern Kazakhstan,” Dokl. Earth Sci. 424 (1), 72–6 (2009).

    Article  Google Scholar 

  67. M. L. Kuibida, N. N. Kruk, O. V. Murzin, S. P. Shokalskii, N. I. Gusev, T. I. Kirnozova, and N. I. Travin, “Geologic position, age, and petrogenesis of plagiogranites in northern Rudny Altai,” Russ. Geol. Geophys. 54 (10), 1305–1318 (2013).

    Article  Google Scholar 

  68. M. L. Kuibida, N. N. Kruk, S. P. Shokal’skii, N. I. Gusev, and O. V. Murzin, “Subduction plagiogranites of Rudny Altai: age and composition characteristics,” Dokl. Earth Sci. 464 (3), 914–918 (2015).

    Article  Google Scholar 

  69. M. L. Kuibida, V. I. Timkin, V. A. Krivchikov, O. V. Murzin, V. I. Krupchatnikov, O. M. Popova, N. N. Kruk, S. N. Rudnev, Ya. V. Kuibida, S. P. Shokal’sky, N. I. Gusev, T. Komiya, S. Aoki, M. Sun, and A. V. Naryzhnova, “Middle Paleozoic rhyolite of the Gorny and Rudny Altai: geochronology and composition,” Dokl. Earth Sci. 487 (2), 885–889 (2019).

    Article  Google Scholar 

  70. M. L. Kuibida, O. V. Murzin, N. N. Kruk, I. Y. Safonova, M. Sun, T. Komiya, J. Wong, S. Aoki, N. M. Murzina, I. Nikolaeva, D. V. Semenova, M. Khlestov, R. A. Shelepaev, P. D. Kotler, V. A. Yakovlev, and A. V. Naryzhnova, “Whole-rock geochemistry and U-Pb ages of Devonian bimodal-type rhyolites from the Rudny Altai, Russia: petrogenesis and tectonic settings,” Gondwana Res. 81, 312–338 (2020).

    Article  Google Scholar 

  71. I. Kushiro and B. Mysen. “A possible effect of melt structure on the Mg–Fe2+ partitioning between olivine and melt,” Geochim. Cosmochim. Acta 66, 2267–2272 (2002). https://doi.org/10(2002).1016/S0016-7037(01)00835–3

    Article  Google Scholar 

  72. V. V. Kuznetsov, N. G. Kudryavtseva, T. V. Seravina, O. V. Murzin, D. A. Korchagina, S. V. Kuznetsova, and S. A. Milyaev, Principles of Prediction and Prospecting of Sulfide–Base Metal Deposits of Rudny Altai (TsNIGRI, Moscow, 2019) [in Russian].

  73. A. S. Lapukhov, A. I. Prokopenko, N. B. Ivanov, and L. M. Trubnikov, Ore-Forming System of the Sulfide–Base Metal Deposits of Shear Zones (Rudny Altai), (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  74. C. Li and E. M. Ripley, “The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling,” Chem. Geol. 275 (1–2), 99–104 (2010).

    Article  Google Scholar 

  75. S. B. Lobach-Zhuchenko, T. V. Kaulina, S. K. Baltybaev, and V. V et al. Balagansky, “The long (3.7–2.1 Ga) and multistage evolution of the Bug granulite–gneiss complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample,” in Archaean Cratons–New Insights on Old Rocks, Ed. by J. Halla, M. J. Whitehouse, T. Ahmad, and Z. Bagai, Geol. Soc. London, Spec. Publ. 449 (1), 175–206 (2017).

  76. S. B. Lobach-Zhuchenko, Ju. S. Egorova, S. G. Scublov, and V. V. Sukach, “Iron- and nickel enriched olivine from phlogopite harzburgite of the Bug granulite complex (Ukrainian Shield),” Mineral. J. (Ukraine) 43 (1), 16–24 (2021).

    Article  Google Scholar 

  77. K. Lobanov, A. Yakubchuk, and R. Creaser, “Besshi-type VMS deposits of the Rudny Altai,” Econ. Geol. 109, 1403–1430 (2014).

    Article  Google Scholar 

  78. R. R. Loucks, “A precise olivine–augite Mg–Fe-exchange geothermometer,” Contrib. Mineral. Petrol. 125 (2–3), 140–150 (1996).

    Article  Google Scholar 

  79. A. S. Mekhonoshin, T. B. Kolotilina, A. A. Doroshkov, and E. E. Pikiner, “Compositional variations of Cr-spinel in high–Mg intrusions of the Primorsky Ridge (Western Baikal Region, Russia),” Minerals 10 (7), 608 (2020).

    Article  Google Scholar 

  80. J. Mercier, “Single-pyroxene thermobarometry,” Tectonophysics 70, 1–37 (1980).

    Article  Google Scholar 

  81. Yu. V. Mironov, E. A. Elyanova, Yu. G. Zorina, and E. G. Mirlin, Volcanism and Oceanic Sulfide Formation (Nauchnyi mir, Moscow, 1999) [in Russian].

  82. V. A. Mokhov and I. V. Vikentyev, “Dynamometamorphic sulfide–base metal deposits of the Leninogorsk district (R. Altai),” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., No. 12, 55–61 (1988).

  83. J. F. Molina, J. A. Moreno, A. Castro, C. Rodriguez, and G. B. Fershtater, “Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al–Si partitioning and amphibole/liquid Mg partitioning,” Lithos 232, 286–305 (2015).

    Article  Google Scholar 

  84. Y. Niu, M. Wilson, E. R. Humphrteys, and M. J. O’Hata, “The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications,” J. Petrol. 52 (7–8), 1443–1468 (2011).

    Article  Google Scholar 

  85. H. St. C. O’Neill and V. J. Wall, “The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle,” J. Petrol. 28, 1169–1191 (1987).

    Article  Google Scholar 

  86. L. N. Ovchinnikov and V. D. Baranov, “Some regularities in the distribution of sulfide–base metal deposits of Altai,” Geol. Rudn. Mestorozhd., No. 6, 17–31 (1973).

  87. H. Palme and H. S. O’Neill, “Cosmochemical estimates of mantle composition,” In Treatise of Geochemistry. 2. Mantle and Core, Ed. by H. D. Holland and K. K. Turekian (Elsevier Science, 2003), pp. 1–38.

    Google Scholar 

  88. D. Pearson and N. Wittig, “Formation of Archaean continental lithosphere and its diamonds: the root of the problem,” J. Geol. Soc. 165, 895–914 (2008).

    Article  Google Scholar 

  89. D. G. Pearson, D. Canil, and S. B. Shiery, “Mantle samples included in volcanic rocks: xenoliths and diamonds,” In Treatise of Geochemistry 2. Mantle and Core, Ed. by H. D. Holland and K. K. Turekian, (Elsevier Science, 2003), pp. 172–278.

    Google Scholar 

  90. A. Polat, P. W. U. Appel, B. Fryer, et al., “Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin,” Precambrian Res. 175, 87–11 (2009).

    Article  Google Scholar 

  91. V. V. Popov, N. I. Stuchevskii, and Yu. I. Demin, Base Metal Deposits of Rudny Altai, Ed. by N. I. Eremin (IGEM RAN, Moscow, 1995) [in Russian].

    Google Scholar 

  92. M. Portnyagin, R. Almeev, S. Matveev, and F. Holtz, “Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett 272 (3–4), 541–552 (2008).

    Article  Google Scholar 

  93. D. Prelevic and S. F. Foley, “Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites,” Earth Planet. Sci. Lett. 256 (1–2), 120–135 (2007).

    Article  Google Scholar 

  94. D. Prelevic, D. E. Jacob, and S. F. Foley, “Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere,” Earth Planet. Sci. Lett. 362, 187–197 (2013).

    Article  Google Scholar 

  95. M. Yu. Promyslova, “Geodynamic nature of ore-bearing basalt–rhyolite formations of the Leninogorsk district, Rudny Altai,” Vestn. Mosk. Univ. Ser. 4: Geol., No. 4, 16–24 (2005).

  96. K. Putirka, “Thermometers and Barometers for Volcanic Systems. In: Minerals, Inclusions and Volcanic Processes, Ed. by K. Putirka, and F. Tepley, Rev. Mineral. Geochem., Mineral. Soc. Am. 69, 61–120 (2008).

  97. M. Rehkämper and A. M. Halliday, “Accuracy and long-term reproducibility of Pb isotopic measurements by MC-ICP-MS using an external method for correction of mass discrimination,” Int. J. Mass Spec. 181, 123–133 (1998).

    Article  Google Scholar 

  98. F. J.M. Rietmeijer, “Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: a re-evaluation,” Mineral. Mag. 47, 143–151 (1983).

    Article  Google Scholar 

  99. A. B. E. Rocholl, K. Simon, K. P. Jochum, et al., “Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE,” Geostand. Geoanalyt. Res. 21 (1), 101–114 (1997).

    Article  Google Scholar 

  100. P. L. Roeder and R. F. Emslie, “Olivine–liquid equilibrium,” Contrib. Mineral. Petrol. 29, 275–289 (1970).

    Article  Google Scholar 

  101. I. A. Rotarash, S. G. Samygin, and E. A. Gredyushko, “Devonian active continental margin on southwestern Altai,” Geotektonika, No. 1, 44–59 (1982).

    Google Scholar 

  102. R. L. Rudnick, W. F. McDonough, and A. Orpin, “Northern Tanzanian peridotite xenoliths: a comparison with Kaapvaal peridotites and inferences on metasomatic interactions,” Proc. Fifth Int. Kimberlite Conf. (Araxa, 1994), pp. 336–353.

  103. I. Yu. Safonova, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGM SO RAN, Novosibirsk, 2021) [in Russian].

  104. S. V. Saraev, T. P. Baturina, N. K. Bakharev, N. G. Izokh, and N. V. Sennikov, “Middle—Late Devonian island-arc volcanosedimentary complexes in northwestern Rudny Altai,” Russ. Geol. Geophys. 53 (10), 982–996 (2012).

    Article  Google Scholar 

  105. P. Sengupta, S. Dasgupta, P. K. Bhattacharya, and M. Mukherjee, “An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks,” J. Metamorph. Geol. 8 (2), 191–197 (1990).

    Article  Google Scholar 

  106. I. B. Seravkin, “Correlation between compositions of ore and host rocks in volcanogenic massive sulfide deposits of the Southern Urals,” Geol. Ore Deposits 55 (3), 207–224 (2013).

    Article  Google Scholar 

  107. W. C. P. Shanks, R. A. Koski, D. L. Mosier, K. J. Schulz, L. A. Morgan, J. F. Slack, W. I. Ridley, C. Dusel–Bacon, R. R. Seal, and N. Piatak, Volcanogenic Massive Sulfide Occurrence Model: Chapter C in Mineral Deposit Models for Resource Assessment, Ed. by W. C. Pat Shanks III and R. Thurston, USGS Scientific Investigations Report, No. 2010-5070-C (2012).

  108. G. N. Shcherba, “Sulfide–base metal deposits of Rudny Altai,” in VMS Deposits of the USSR (Nauka, Moscow, 1983), pp. 87–148.

    Google Scholar 

  109. G. N. Shcherba, B. A. Dyachkov, N. I. Stuchevskii, G. P. Nakhtigal, A. N. Antonenko, and V. N. Lyubetskii, The Greater Altai (Geology and Metallogeny). Volume 1. Geological Structure (Gylym, Almaty, 1998) [in Russian].

  110. E. P. Shirai, E. I. Filatov, G. S. Gusev, A. V. Gushchin, V. V. Zaikov, V. V. Maslennikov, N. V. Mezhelovskii, and B. V. Perevozchikov, Metallogeny of Series of Island Arc Geodynamic Settings (MPR RF–IMGRE–Geokart–RosGeo, Moscow, 1999) [in Russian].

    Google Scholar 

  111. L. Shumlyanskyy, S. A. Wilde, A. A. Nemchin, S. Claesson, K. Billstrom, and B Bagiґnski, “Eoarchean rock association in the Dniester–Bouh Domain of the Ukrainian Shield: a suite of LILE–depleted enderbites and mafic granulites,” Precambrian Res. 352, 106001 (2021).

    Article  Google Scholar 

  112. N. S. C. Simon, R. W. Carlson, G. R. Davies, D. G. Pearson, and G. M. Nowell, “Os–Sr–Nd–Hf isotope evidence for the ancient depletion and subsequent multi–stage enrichment history Kaapvaal cratonic lithosphere,” 8th International Kimberlite Conference Long Abstract (Victoria, 2003), 0117.

  113. V. A. Simonov, I. V. Gaskov, and S. V. Kovyazin, “Physicochemical parameters from melt inclusions for the formation of the massive sulfide deposits in the Altai–Sayan Region, Central Asia,” Austral. J. Earth Sci. 57, 737–754 (2010).

    Article  Google Scholar 

  114. V. I. Smirnov, VMS Deposits around the World (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  115. A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, N. T Arndt, et al., “The amount of recycled crust in sources of mantle-derived melts,” Science 316, 412–417 (2007).

    Article  Google Scholar 

  116. J. S. Stacey and I. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two–stage model,” Earth Planet. Sci. Lett. 26 (2), 207–221 (1975).

    Article  Google Scholar 

  117. C. D. Standish, B. Dhuime, R. J. Chapman, C. J. Hawkesworth, and A. W.G. Pike, “The genesis of gold mineralisation hosted by orogenic belts: a lead isotope investigation of Irish gold deposits,” Chem. Geol. 378–379, 40–51 (2014).

    Article  Google Scholar 

  118. R. Hart Stanley and Karleen E. Davis, “Nickel partitioning between olivine and silicate melt,” Earth Planet. Sci. Lett. 40 (2), 203–219 (1978).

    Article  Google Scholar 

  119. V. I. Starostin, I. V. Vikentyev, and D. R. Sakiya, “Conditions of formation and transformation of massive sulfide deposits in the Kedrovka–Butachikha zone of the Rudnyy Altay,” Int. Geol. Rev. 31 (3), 297–305 (1989).

    Article  Google Scholar 

  120. T. Sugawara, “Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid,” J. Geophys. Res. 105 (B4), 8457–8472 (2000).

    Article  Google Scholar 

  121. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  122. N. G. Syromyatnikov, N. I. Zamyatin, and L. A. Trofimova, “Lead, sulfur, and radioelement isotopes as indicators of deposit genesis,” in Volcanogenic-Sedimentary Litho- and Ore Genesis (Nauka, Alma-Ata, 1981), pp. 124–140.

  123. E. Takahashi, “Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts: compositional dependence of partition coefficient,” Geochim. Cosmochim. Acta. 42 (12), 1829–1844 (1978).

    Article  Google Scholar 

  124. S. R. Taylor and S. M. McLennon, The Continental Crust: its Composition and Evolution (Blackwell Sci. Publ., Oxford, 1985).

    Google Scholar 

  125. W. R. Taylor, M. Kamperman, and R. Hamilton, “New thermobarometer and oxygen fugacity sensor calibrations for ilmenite- and chromian spinel-bearing peridotitic assemblages,” Proc. VII Int. Kimb. Conf., (Red. Roof. Design, Cape Town, 1998), pp. 891–892 (1998).

  126. A. P. Trofimov, “Ore-bearing volcanotectonic structures and primary geochemical haloes of sulfide–base metal deposits of the Beloubinsk synclinorium (Rudny Altai),” Geol. Rudn. Mestorozhd., No. 3, 41–54 (1981).

  127. J. D. Vervoort and P. J. Patchett, “Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites,” Geochim. Cosmochim. Acta 60 (19), 3713–3733 (1996).

    Article  Google Scholar 

  128. I. V. Vikentyev, “Ore-bearing paleovolcanic structures of the Zyryanovsk sulfide–basemetal deposit (Rudny Altai),” Izv. Vyssh. Ucheb. Zaved. Geol. Razved., No. 5, 87–93 (1986).

  129. I. V. Vikentyev, “Metamorphogenic structures of the Tishinskoe deposit (Rudny Altai),” Geol. Rudn. Mestorozhd. 29 (1), 66–76 (1987).

    Google Scholar 

  130. I. V. Vikentyev, “Tektonophysical analysis of VMS deposits of the Nortehastern shear zone on Altai,” Izv. Vyssh. Ucheb. Zaved. Geol. Razved., No. 4, 83–91 (1994).

  131. I. V. Vikentyev, Conditions of Formation and Metamorphism of VMS Ores (Nauchnyi mir, Moscow, 2004) [in Russian].

  132. I. V. Vikentyev and V. P. Karmanov, “Two structural-geochemical types of basemetal deposits in the Leninogorsk ore district,” Izv. Vyssh. Ucheb. Zaved. Geol. Razved., No. 8, 48–57 (1989).

  133. I. V. Vikentyev, V. N. Gavrilets, and Yu. S. Borodaev, “Melanocratic dikes of the Zyryanovsk deposit (R. Altai),” Geol. Rudn. Mestorozhd. 1 (4), 99–104 (1988).

    Google Scholar 

  134. I. V. Vikentyev, E. Bonatti, and A. A. Peive, “Ore mineralization in the typical section of the oceanic crust, Vema Fracture Zone, 10°45′ N MAR),” Dokl. Earth Sci. 375A (9), 1350–1353 (2000a).

    Google Scholar 

  135. I. V. Vikentyev, Yu. A. Belen’kaya, and B. I. Ageev, “The Aleksandrinsk polymetallic massive sulfide deposit (the Urals, Russia),” Geol. Ore Deposits 42 (3), 221–246 (2000b).

    Google Scholar 

  136. I. V. Vikentyev, A. Yu. Borisova, V. S. Karpukhina, V. B. Naumov, and I. D. Ryabchikov, “Direct data on the ore potential of acid magmas of the Uzel’ginskoe Ore Field (Southern Urals, Russia),” Dokl. Earth Sci. 443 (3), 401–405 (2012).

    Article  Google Scholar 

  137. I. V. Vikentyev, V. A. Simonov, A. Y. Borisova, V. S. Karpukhina, and V. B. Naumov, “Volcanic-hosted massive sulfide deposits of the Urals, Russia: evidence for a magmatic contribution of metals and fluid,” In: Mineral Deposit Research for a High–Tech World, Ed. by E. Jonsson, (Uppsala, 2013), pp. 1526–1529 (2013).

    Google Scholar 

  138. I. V. Vikentyev, E. V. Belogub, K. A. Novoselov, and V. P. Moloshag, “Metamorphism of volcanogenic massive sulphide deposits in the Urals,” Ore Geol. Rev. 85, 30–63 (2017).

    Article  Google Scholar 

  139. I. V. Vikentyev, B. B. Damdinov, O. R. Minina, A. V. Spirina, and L. B. Damdinova, “Classification of base metal ore formation and transitional VMS–SEDEX–MV-type as an example of the giant Ozernoe deposit in Transbaikalia, Russia,” Geol. Ore Deposits. 65 (3), 1–36 (2023).

    Google Scholar 

  140. A. G. Vladimirov, M. S. Kozlov, S. P. Shokalskii, V. A. Khalilov, S. N. Rudnev, N. N. Kruk, S. A. Vystavnoi, S. M. Borisov, Yu. K. Berezikov, A. N. Metsner, G. A. Babin, A. N. Mamlin, O. M. Murzin, G. V. Nazarov, and V. A. Makarov, “Major epochs of intrusive magmatism of Kuznetsk Alatau, Altai, and Kalba (from U-Pb isotope dates),” Russ. Geol. Geophys. 42 (8), 1157–1178 (2001).

    Google Scholar 

  141. A. G. Vladimirov, N. N. Kruk, S. N. Rudnev, and S. V. Khromykh, “Geodynamics and granitoid magmatism of collisional orogens,” Russ. Geol. Geophys. 44 (12), 1275–1292 (2003).

    Google Scholar 

  142. Volcanogenic Sulfide–Base Metal Deposits, Ed. by G. F. Yakovlev (Mosk. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  143. Z. H. Wan, L. A. Coogan, and D. Canil, “Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer,” Am. Mineral. 93 (7), 1142–1147 (2008).

    Article  Google Scholar 

  144. G. Witt-Eickschen and H. S.C. O’Neill, “The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite,” Chem. Geol. 221 (1–2), 65–101 (2005).

    Article  Google Scholar 

  145. G. F. Yakovlev, V. V. Avdonin, T. Ya. Goncharova, et al., Paleovolcanic Analysis of Pyrite-Bearing Provinces: Evidence from Rudny Altai (MGU, Moscow, 1984) [in Russian].

    Google Scholar 

  146. N. V. Yudovskaya, “Main tendencies in the formation of sulfide–base metal ores of the deposits of the Zyryanovsk district,” Izv. AN KazSSR. Ser. Geol., No. 5, 37–45 (1984).

  147. R. E. Zartman and B. R. Doe, “Plumbotectonics–the model,” Tectonophysics 75, 135–162 (1981).

    Article  Google Scholar 

  148. A. Zindler and S. Hart (1986). Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

  149. S. V. Zinoviev, “The role of dynamometamorphism in the formation of ore deposits (by the example of the Tishinka and Ridder-Sokol’noe VMS deposits in Rudny Altai),” Russ. Geol. Geophys. 57 (3), 409–420 (2016).

    Article  Google Scholar 

  150. L. P. Zonenshain, M. I. Kuzmin, and V. I. Moralev, Global Tectonics, Magmatism, and Metallogeny (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

N.S. Bortnikov is thanked for support of our work in the framework of the indicated project. K.N. Shatagin and N.V. Serdyuk are thanked for help with analytical studies.

We are grateful to V.V. Kuznetsov and S.V. Kuznetsova for kindly given rock samples, as well as for recommendations during manuscript preparation. The head and geological survey of “Kazzinc” Mining and Metallurgical Company are thanked for the access to core and underground mining workings of the Leninogorsk ore district, while geologists of the Ridder MPP, first of all, V.I. Mamin, and Altai Geological-Economic Institute (G.D. Ganzhenko), are thanked for help with the organization of field works and obtaining ore samples. Anonymous reviewer are acknowledged for valuable comments that significantly improved the final version of the manuscript.

Funding

The studies were financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 13.1902.21.0018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Chernyshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, I.V., Vikentyev, I.V., Chugaev, A.V. et al. Sources of Metals for the Rudny Altai VMS Deposits: Results of High-Precision MC-ICP-MS Lead Isotope Study. Geochem. Int. 61, 539–561 (2023). https://doi.org/10.1134/S0016702923060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923060022

Keywords:

Navigation