Skip to main content
Log in

Neoproterozoic Collision Granitoids in the Southwestern Margin of the Siberian Craton: Chemical Composition, U−Pb Age, and Formation Conditions of the Gusyanka Massif

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper provides evidence that collisional magmatism related to the Neoproterozoic (880−860 Ma) orogenic event occurred in the southwest of the Siberian Craton. Newly obtained data are presented on the major-component and trace-element composition, U−Pb (SHRIMP II) zircon age, and Sm−Nd isotope composition for rocks of the Gusyanka granitoid massif in the Yenisei fault zone of the Yenisei Ridge. The concordant U−Pb zircon age of the Gusyanka massif is 871 ± 11 Ma indicates that its rocks were formed in the mid-Early Neoproterozoic, simultaneously with the rocks of the Kalama and Eruda massifs in the Tatarka−Ishimba fault system, during the same stage of the collisional events at approximately 880–860 Ma. The calc-alkaline granites, granodiorites, and leucogranites of the Gusyanka massif are classified, on the basis of their high alumina content and trace element composition, as S-type and were derived from a metapelitic source. Many trace-element parameters of rocks of the Kalama and Eruda massifs correspond to those of low-potassium I-type granites, which were most likely derived from mafic rocks and tonalites. The granitoids of the Gusyanka massif, on the one hand, and the Kalama and Middle Tyrada massifs, on the other, differ contrastingly in Nd isotope composition. The source of the former was either metapelites of the Tungusik Group or metasedimentary rocks of the Sukhoi Pit Group, with the involvement of juvenile material. The melts of granites of the Kalama and Middle Tyrada massifs might have been derived from a source with the involvement of an older, possibly Paleoproterozoic, crustal material and a juvenile mafic source. Thus, the orogenic events at 880−860 Ma led to the generation of melts at different levels of the Paleo- to Mesoproterozoic crust of the trans-Angara region of the Yenisei Ridge. The geodynamic history of the region is correlated with the synchronous successions and similar style of tectono-thermal events along the peripheries of the large Precambrian cratons of Laurentia and Baltica, and this is consistent with paleocontinental reconstructions of the close spatiotemporal relations between these cratons, Siberia, and their incorporation into Rodinia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. R. Altherr, A. Holl, E. Hegner, C. Langer, and H. Kreuzer, “High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany),” Lithos 50, 51–73 (2000).

    Article  Google Scholar 

  2. T. B. Bayanova, Age of Reference Geological Complexes of the Kola Region and Duration of Magmatism (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  3. S. V. Bogdanova, B. Bingen, R. Gorbatschev, T. N. Kheraskova, V. I. Kozlov, V. N. Puchkov, and Yu. A. Volozh, “The Eastern European Craton (Baltica) before and during the assembly of Rodinia,” Precambrian Res. 160, 23–45 (2008).

    Article  Google Scholar 

  4. S. V. Bogdanova, S. A. Pisarevsky, and Z. X. Li, “Assembly and breakup of Rodinia (some results of IGCP Project 440),” Stratigraphy. Geol. Correlation 17 (3), 259–274 (2009).

    Article  Google Scholar 

  5. A. Bouvier, J. D. Vervoort, and P. J. Patchett, “The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273 (1–2), 48–57 (2008).

    Article  Google Scholar 

  6. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” In Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  7. P. A. Cawood, A. A. Nemchin, R. A. Strachan, P. D. Kinny, and S. Loewy, “Laurentian provenance and an intracratonic tectonic setting for the upper Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions,” J. Geol. Soc. London 161, 861–874 (2004).

    Article  Google Scholar 

  8. P. A. Cawood, R. Strachan, K. Cutts, P. D. Kinny, M. Hand, and S. Pisarevsky, “Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic,” Geology 38, 99–102 (2010).

    Article  Google Scholar 

  9. P. A. Cawood, R. A. Strachan, S. A. Pisarevsky, D. P. Gladkochub, and J. B. Murphy, “Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles,” Earth Planet. Sci. Lett. 449, 118–126 (2016).

    Article  Google Scholar 

  10. B. W. Chappell, “Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranite,” Lithos 46, 535–551 (1999).

    Article  Google Scholar 

  11. B. W. Chappell, C. J. Bryant, and D. Wyborn, “Peraluminous I-type granites,” Lithos 153, 142–153 (2012).

    Article  Google Scholar 

  12. A. I. Chernykh, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (OIGGM SO RAN, Novosibirsk, 2000) [in Russian].

  13. I. W. D. Dalziel, “Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis and environmental speculation,” Geol. Soc. Am. Bull. 109, 16–42 (1997).

    Article  Google Scholar 

  14. N. L. Dobretsov, “Global geodynamic evolution of the Earth and global geodynamic models,” Russ. Geol. Geophys. 51 (6), 592–610 (2010).

    Article  Google Scholar 

  15. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. X. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implication for the reconstruction of the proposed Nuna (Colombia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  16. B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  17. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematic of river water suspended material implications for crystal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  18. State Geological Map of the Russian Federation. Scale 1 : 1000000 (Third Generation). Aldan–Yenisei Series. Sheet O–46 (Krasnoyarsk). Explanatory Note (Kartogr. fabrika VSEGEI, St. Petersburg, 2009) [in Russian].

  19. Å. Johansson, “From Rodinia to Gondwana with the ‘SAMBA’ model–A distant view from Baltica towards Amazonia and beyond,” Precambrian Res. 244, 226–235 (2014).

    Article  Google Scholar 

  20. L. K. Kachevskii, G. I. Kachevskaya, and Zh. M. Grabovskaya, Geological Map of the Yenisei Ridge on a Scale 1 : 500 000, Ed. by A. K. Mkrtychyan and M. L. Sherman (Krasnoyarskgeols’’emka, Krasnoyarsk, 1998) [in Russian].

  21. E. M. Khabarov and I. V. Varaksina, “The structure and depositional environments of Mesoproterozoic petroliferous carbonate complexes in the western Siberian Craton,” Russ. Geol. Geophys. 52 (8), 923–944 (2011).

    Article  Google Scholar 

  22. V. V. Khomentovsky, “The Upper Riphean of the Yenisei Range,” Russ. Geol. Geophys. 48 (9), 711–720 (2007).

    Article  Google Scholar 

  23. P. S. Kozlov, I. I. Likhanov, V. V. Reverdatto, and S. V. Zinovev, “Tectonometamorphic evolution of the Garevka polymetamorphic complex (Yenisei Ridge),” Russ. Geol. Geophys. 53 (11), 1133–1149 (2012).

    Article  Google Scholar 

  24. A. B. Kuznetsov, G. V. Ovchinnikova, I. M. Gorokhov, I. M. Vasilyeva, and A. Bekker, “Unradiogenic strontium and moderate-amplitude carbon isotope variations in Early Tonian seawater after the assembly of Rodinia and before the Bitter Spring excursion,” Precambrian Res. 298, 157–173 (2017).

    Article  Google Scholar 

  25. A. B. Kuznetsov, B. B. Kochnev, I. M. Vasileva, and G. V. Ovchinnikova, “The Upper Riphean of the Yenisei Range: Sr chemostratigraphy and Pb–Pb age of limestones of the Tungusik and Shirokaya Groups,” Stratigraphy. Geol. Correlation 27 (5), 538–554 (2019).

    Article  Google Scholar 

  26. A. M. Larin, “Granity rapakivi i assotsiiruyushchie porody. SPb.: Nauka, 402 s (2011).

  27. R. Z. Levkovskii, “Rapakivi. L.: Nedra, 221 s (1975).

  28. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, Waele B. De, R. E. Ernst, I. C.W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, Natapov S. S., V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: A synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  29. I. I. Likhanov, “Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia,” In Metamorphic Geology: Microscale to Mountain Belts, Geol. Soc. London Spec. Publ. 478, 89–115 (2019).

    Article  Google Scholar 

  30. I. I. Likhanov, “Metamorphic indicators for collision, extension, and shear zone geodynamic settings of the Earth’s crust,” Petrology 28 (1), 1–16 (2020).

    Article  Google Scholar 

  31. I. I. Likhanov, “Provenance, age and tectonic settings of rock complexes (Transangarian Yenisey Ridge, East Siberia): Geochemical and geochronological evidence,” Geosciences 12 (11), 402 (2022a).

    Article  Google Scholar 

  32. I. I. Likhanov, “Grenville and Valhalla tectonic events at the western margin of the Siberian Craton: evidence from rocks of the Garevka Complex, Northern Yenisei Range, Russia,” Petrology 30, Suppl. 1, S72–S100 (2022b)

  33. I. I. Likhanov and V. V. Reverdatto, “Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge,” Geochem. Int. 52 (1), 1–21 (2014).

    Article  Google Scholar 

  34. I. I. Likhanov and V. V. Reverdatto, “Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge,” Geochem. Int. 54 (2), 127–148 (2016).

    Article  Google Scholar 

  35. I. I. Likhanov and M. Santosh, “A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia,” Precambrian Res. 328, 128–145 (2019).

    Article  Google Scholar 

  36. I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, “Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton,” Geotectonics 48 (5), 371–389 (2014).

    Article  Google Scholar 

  37. I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “Collision-related metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate,” Russ. Geol. Geophys. 52 (10), 1256–1269 (2011).

    Article  Google Scholar 

  38. I. I. Likhanov, V. V. Reverdatto, and P. S. Kozlov, “U-Pb and 40Ar-39Ar evidence for Grenvillian activity in the Yenisey Ridge during formation of the Teya metamorphic complex,” Geochem. Int. 50 (6), 551–557 (2012).

    Article  Google Scholar 

  39. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and V. V. Khiller, “Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology,” Dokl. Earth Sci. 450 (1), 556–561 (2013).

    Article  Google Scholar 

  40. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions,” J. Asian Earth Sci. 113 (1), 391–410 (2015).

    Article  Google Scholar 

  41. I. I. Likhanov, J. -L. Régnier, and M. Santosh, “Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean,” Lithos 304–307, 468–488 (2018).

    Article  Google Scholar 

  42. I. I. Likhanov, S. V. Zinoviev, and P. S. Kozlov, “Blastomylonite complexes of the western Yenisei Ridge (Eastern Siberia, Russia): geological position, metamorphic evolution and geodynamic models,” Geotectonics 55 (1), 36–57 (2021).

    Article  Google Scholar 

  43. K. R. Ludwig, “User’s manual for Isoplot/Ex, Version 2.10. A geochronological toolkit for Microsoft Excel,” Berkeley Geochronology Center Spec. Publ. 1, (1999).

  44. K. R. Ludwig, “SQUID 1.00. User’s manual,” Berkeley Geochronology Center Special Publ. 2, (2000).

  45. D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions,” Russ. Geol. Geophys. 53 (7), 675–688 (2012).

    Article  Google Scholar 

  46. I. V. Nikolaeva, S. V. Palesskii, O. A. Koz’menko, and G. N. Anoshin, “Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma – mass spectrometry (ICP-MS). Geochem. Int. 46 (10), 1016–1022 (2008).

    Article  Google Scholar 

  47. A. D. Nozhkin and O. M. Turkina, Geochemistry of Granulites of the Kan and Sharyzhalgai Complexes (OIGGM SO RAN, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  48. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, and V. V. Khomentovsky, “Riphean granite gneiss domes of the Yenisei Ridge: geological structure and U‑Pb isotope age,” Geol. Geofiz. 40 (9), 1305–1313 (1999).

    Google Scholar 

  49. A. D. Nozhkin, O. M. Turkina, Yu. K. Sovetov, and A. V. Travin, “The Vendian Accretionary Event in the Southwestern Margin of the Siberian Craton,” Dokl. Earth Sci. 415A (6), 869–873 (2007).

    Article  Google Scholar 

  50. A. D. Nozhkin, O. M. Turkina, T. B. Bayanova, N. G. Berezhnaya, A. N. Larionov, A. A. Postnikov, A. V. Travin, and R. E. Ernst, “Neoproterozoic rift and within-plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia,” Russ. Geol. Geophys. 49 (7), 503–519 (2008).

    Article  Google Scholar 

  51. A. D. Nozhkin, O. M. Turkina, N. V. Dmitrieva, V. P. Kovach, and Yu. L. Ronkin, “Sm–Nd isotopic systematics of Precambrian metapelites from the Yenisei Range and age variations of their provenances,” Dokl. Earth Sci. 423A (9), 1495–1500 (2008).

    Article  Google Scholar 

  52. A. D. Nozhkin, O. M. Turkina, and T. B. Bayanova, “Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U-Pb geochronological and Sm-Nd isotope data,” Dokl. Earth Sci. 428 (7), 1192–1197 (2009).

    Article  Google Scholar 

  53. A. D. Nozhkin, A. S. Borisenko, and P. A. Nevolko, “Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge,” Russ. Geol. Geophys. 52 (1), 124–143 (2011).

    Article  Google Scholar 

  54. A. D. Nozhkin, N. V. Popov, N. V. Dmitrieva, A. A. Storozhenko, and N. F. Vasilev, “Neoproterozoic collisional S-type granitoids of the Yenisei Ridge: petrogeochemical composition and U-Pb, Ar-Ar, and Sm-Nd isotope data,” Russ. Geol. Geophys. 56 (5), 689–695 (2015).

    Article  Google Scholar 

  55. A. D. Nozhkin, O. M. Turkina, I. I. Likhanov, and N. V. Dmitrieva, “Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara–Kan block),” Russ. Geol. Geophys. 57 (2), 247–264 (2016).

    Article  Google Scholar 

  56. A. D. Nozhkin, O. M. Turkina, I. I. Likhanov, and K. A. Savko, “Paleoproterozoic metavolcanosedimentary sequences of the Yenisei metamorphic complex, southwestern Siberian Craton (Angara–Kan block); subdivision, composition, and U-Pb zircon age,” Russ. Geol. Geophys. 60 (10), 1101–1118 (2019).

    Article  Google Scholar 

  57. J. A. Pearce, N. B.W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  58. I. I. Popov, N. V. Likhanov, and A. D. Nozhkin, “Mesoproterozoic granitoid magmatism in the Trans-Angara segment of the Yenisei Range: U–Pb evidence,” Dokl. Earth Sci. 431 (2), 418–423 (2010).

    Article  Google Scholar 

  59. R. P. Rapp and E. B. Watson, “Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling,” J. Petrol. 36, 891–931 (1995).

    Article  Google Scholar 

  60. S. Rino, Y. Kon, W. Sato, S. Maruyama, M. Santosh, and D. Zhao, “The Grenvillian and Pan-African orogens: world’s largest orogenies through geological time, and their implications on the origin of superplume,” Gondwana Res. 14, 51–72 (2008).

    Article  Google Scholar 

  61. T. Rivers, “Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province – Implications for the evolution of large hot long-duration orogens,” Precambrian Res. 167, 237–259 (2008).

    Article  Google Scholar 

  62. M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, G. V. Konstantinova, N. N. Melnikova, V. N. Podkovyrov, and E. P. Kutyavin, “Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: determining factors,” Stratigraphy. Geol. Correlation 10 (1), 1–41 (2002).

    Google Scholar 

  63. V. Yu. Shenfil’, Late Precambrian of the Siberian Platform (Sib. Otd. Nauka, Nauka, 1991) [in Russian].

  64. J. Singh and W. Johannes, “Dehydration melting of tonalites. 2. Compositions of melts and solids,” Contrib. Mineral. Petrol. 125, 26–44 (1996).

    Article  Google Scholar 

  65. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  66. P. J. Sylvester, “Post-collisional strongly peraluminous granites,” Lithos 45, 29–44 (1998).

    Article  Google Scholar 

  67. T. H. Torsvik, “The Rodinia Jigsaw puzzle,” Science 300, 1379–1381 (2003).

    Article  Google Scholar 

  68. A. E. Vernikovskaya, V. A. Vernikovskii, E. B. Salnikova, V. M. Datsenko, A. B. Kotov, A. V. Travin, and M. T. D. Wingate, “Yeruda and Chirimba granitoids (Yenisei Range) as indicators of Late Proterozoic collisions,” Russ. Geol. Geophys. 43 (3), 259–272 (2002).

    Google Scholar 

  69. A. E. Vernikovskaya, V. A. Vernikovskii, E. B. Salnikova, A. B. Kotov, V. P. Kovach, A. V. Travin, S. V. Palesskii, S. Z. Yakovleva, A. M. Yasenev, and A. M. Fedoseenko, “Neoproterozoic postcollisional granitoids of the Glushikha Complex, Yenisei Range,” Petrology 11 (1), 48–61 (2003).

    Google Scholar 

  70. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yeniseri Ridge,” Russ. Geol. Geophys. 47 (1), 32–50 (2006).

    Google Scholar 

  71. V. A. Vernikovsky, A. E. Vernikovskaya, M. T.D. Wingate, N. V. Popov, and V. P. Kovach, “The 880–864 Ma granite of the Yenisey Ridge, western Siberian margin: geochemistry, SHRIMP geochronology, and tectonic implications,” Precambrian Res. 154, 175–191 (2007).

    Article  Google Scholar 

  72. D. Vielzeuf and J. M. Montel, “Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships,” Contrib. Mineral. Petrol. 117, 375–393 (1994).

    Article  Google Scholar 

  73. J. M. Watkins, J. D. Clemens, and P. J. Treloar, “Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa,” Contrib. Mineral. Petrol. 54, 91–110 (2007).

    Article  Google Scholar 

  74. E. B. Watson and T. M. Harrison, “Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types,” Earth Planet. Sci. Lett. 6, 295–304 (1983).

    Article  Google Scholar 

  75. I. S. Williams, “U-Th-Pb geochronology by ion-microprobe,” In Applications of Microanalytical Techniques to Understanding Mineralizing Arocesses, Ed. by M. A. McKibben, W. C. Shanks, III, and W. I. Ridley, Rev. Econ. Geol., 7, 1–35 (1998).

    Google Scholar 

  76. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Salnikova, I. K. Kozakov, A. B. Kotov, V. P. Kovach, N. V. Vladykin, and S. Z. Yakovleva, “U–Pb age of syn- and postmetamorphic granitoids of South Mongolia: evidence for the presence of Grenvillides in the Central Asian Foldbelt,” Dokl. Earth Sci. 404 (7), 986–990 (2005a).

    Google Scholar 

  77. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Salnikova, A. V. Nikiforov, A. B. Kotov, and N. V. Vladykin, “Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton,” Dokl. Earth Sci. 404 (7), 1031–1036 (2005b).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.G. Skublov and Sh.K. Baltybaev for valuable comments and recommendations, which led us to improve the earlier variant of the manuscript.

Funding

This study was supported by Russian Science Foundation, project 21-77-20018, and the fieldwork was supported by a government-financed research project for Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences (122041400176-0; 122041400057-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Nozhkin, O. M. Turkina or I. I. Likhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nozhkin, A.D., Turkina, O.M. & Likhanov, I.I. Neoproterozoic Collision Granitoids in the Southwestern Margin of the Siberian Craton: Chemical Composition, U−Pb Age, and Formation Conditions of the Gusyanka Massif. Geochem. Int. 61, 484–498 (2023). https://doi.org/10.1134/S0016702923050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923050063

Keywords:

Navigation