Skip to main content
Log in

Quartz-Hosted Fluid Inclusions in Commercial Ores of Various Type at the Verninskoe Gold Deposit, Bodaibo District, Russia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents data on quartz-hosted fluid inclusions in commercial ores of various type (veinlet−disseminated and vein) of the Verninskoe gold deposit. The ores of various types were found out to significantly vary in the values of some of their physicochemical parameters of the fluids and in the composition of these fluids. The fluids that formed the gold veins have a somewhat higher initial temperature (356–246°C), a higher density of carbon dioxide in gas inclusions (1.00–0.84 g/cm3), and a higher fluid pressure (3170–1390 bar) than those of the fluids that formed the veinlet–disseminated ores (330–252°C, 0.87–0.54 g/cm3, and 1960–570 bar, respectively). The fluids that formed the gold veins were enriched in CО2, Sr, Ag, Ga, Ge, Mn, Fe, Ni, Sn, Ba, and REE, whereas the fluids that formed veinlet–disseminated mineralization were richer in \({\text{HCO}}_{3}^{ - }\), Br, Sb, V, and Au. This situations may be explained by the interaction of the deep fluid with the terrigenous host rocks in the course of ore deposition. When vein quartz crystallized in relatively wide fractures, the fluid interacted with host rocks and changed not as much as when the veinlet−disseminated ores were formed in narrow fractures. The initial parameters of the fluid that formed the vein quartz were thus the closest to the characteristics of the fluid that transported the ore components, and the comparison of these data with the parameters of the fluids that formed the veinlet–disseminated mineralization demonstrates that they changed in the course of ore deposition. The mineral-forming fluids likely came from a deep-sitting source, and the mineral-forming processes may have involve granitoid-derived fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. R. J. Bodnar, P. Lecumberri–Sanchez, D. Moncada, and P. Steele-Maclnnes, “Fluid inclusions in hydrothermal ore deposits,” Reference Module in Earth Systems and Environmental Sciences. Treatise on Geochemistry, 2nd Edition, Elsevier, 119–142 (2014).

    Google Scholar 

  2. A. S. Borisenko, “Cryometric study of salt composition of gas–liquid inclusions in minerals,” Geol. Geofiz., No. 8, 16–27 (1977).

  3. P. Brown, “FLINCOR: a computer program for the reduction and investigation of fluid inclusion data,” Am. Mineral. 74, 1390–1393 (1989).

    Google Scholar 

  4. V. A. Buryak, Metamorphism and Ore-Forming Processes (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  5. V. A. Buryak and N. M. Khmelevskaya, Sukhoi Log—One of the Largest World’s Gold Deposits: Genesis, Distribution of Mineralization, and Prediction Criteria (Dal’nauka, Vladivostok, 1997) [in Russian].

    Google Scholar 

  6. A. V. Chugaev, A. E. Budyak, Y. O. Larionova, I. V. Chernyshev, A. V. Travin, Y. I. Tarasova, B. I. Gareev, G. A. Batalin, I. V. Rassokhina, and T. I. Oleinikova, “40Ar–39Ar and Rb-Sr age constraints on the formation of Sukhoi–Log—style orogenic gold deposits of the Bodaibo District (Northern Transbaikalia, Russia),” Ore Geol. Rev. 144, 104855 (2022).

    Article  Google Scholar 

  7. P. L. P. Collins, “Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity,” Econ. Geol. 74, 1435–1444 (1979).

    Article  Google Scholar 

  8. V. V. Distler, G. L. Mitrofanov, V. K. Nemerov, et al., “Modes of occurrence of the platinum group elements and their origin in the Sukhoi Log gold deposit (Russia),” Geol. Ore Deposits 38 (6), 413–428 (1996).

    Google Scholar 

  9. V. V. Distler, M. A. Yudovskaya, G. L. Mitrofanov, et al. “Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia,” Ore Geol. Rev. 24 (12), 413–428 (2004).

    Article  Google Scholar 

  10. R. J. Goldfarb and D. I. Groves, “Orogenic gold: Common or evolving fluid and metal sources through time,” Lithos 233, 2–26 (2015).

    Article  Google Scholar 

  11. R. J. Goldfarb, R. Taylor, G. S. Collins, N. A. Goryachev, and O. F. Orlandini, “Phanerozoic continental growth and gold metallogeny of Asia,” Gondwana Res. 25, 48–102 (2014).

    Article  Google Scholar 

  12. D. I. Groves, R. J. Goldfarb, M. Gebre-Mariam, S. G. Hagemann, and F. Robert, “Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types,” Ore Geol. Rev. 13, 7–27 (1998).

    Article  Google Scholar 

  13. D. I. Groves, M. Santosh, J. Deng, Q. Wang, L. Yang, and L. Zhang, “A holistic model for the origin of orogenic gold deposits and its implications for exploration,” Mineral. Deposita 55, 275–292 (2020).

    Article  Google Scholar 

  14. J. Hoefs, Stable Isotope Geochemistry (Springer, 2009).

    Google Scholar 

  15. W. Irber, “The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites,” Geochim. Cosmochim. Acta. 63 (3/4), 489–508 (1999)

    Article  Google Scholar 

  16. A. A. Kotov, V. Yu. Prokofev, T. M Zlobina, and K. Yu. Murashov, “Influence of paleoseismogenic factors on the formation of gold deposits in the dislocation zones,” Modern Geodynamics of Central Asia and Hzardous Processes: Results of Study on the Quantitaitve Basis. Proc. 3 rd All-Russian Conference, Irkutsk, 2016 (IZK RAN, Irkutsk, 2016), pp. 156–159 [in Russian].

  17. S. G. Kryazhev, V. Yu. Prokofev, and Yu. V. Vasyuta, “Application of ICP-MS method in analyzing the composition of ore-forming fluids,” Vestn. Mosk. Gos. Univ., Ser. 4 Geol. 4, 30–36 (2006).

    Google Scholar 

  18. I. V. Kucherenko, R. Yu. Gavrilov, V. G. Martynenko, and A. V. Verkhozin, “Petrological-geochemical features of wall-rock metasomatism in the Verninsky gold deposit (Lena district),” Izv. Tomsk. Politekhn. Univ. 321 (1), 22–33 (2012).

    Google Scholar 

  19. Large and Superlarge Ore Deposits (IGEM RAN, Moscow, 2006).

  20. R. R. Large, V. V. Maslennikov, and F. Robert, et al., “Multi-stage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena Goldfield, Russia,” Econ. Geol. 102, 1233–1267 (2007).

    Article  Google Scholar 

  21. N. P. Laverov, I. V. Chernyshev, A. V. Chugaev, E. D. Bairova, Y. V. Gol’tsman, V. V. Distler, and M. A. Yudovskaya, “Formation stages of the large-scale noble metal mineralization in the Sukhoi Log deposit, east Siberia: results of isotope-geochronological study,” Dokl. Earth Sci. 415, 810–814 (2007).

    Article  Google Scholar 

  22. D. M. Lawrence, P. J. Treloqr, A. H. Rankin, A. Boyce, and P. Harbidge, “A fluid inclusion and stable isotope study at the Loulo mining district, Mali, West Africa: Implications for multifluid sources in the generation of orogenic gold deposits,” Econ. Geol. 108, 229–257 (2013).

    Article  Google Scholar 

  23. V. G. Martynenko, A. V. Domashov, S. Yu. Deis, A. G. Korzakov, and P. I. Kushnarev, “Main features of the geological structure of the Verninsky deposit,” Razved. Okhr. Nedr. 4, 1–8 (2017).

    Google Scholar 

  24. V. Yu. Prokofiev and V. B. Naumov, “Physicochemical parameters and geochemical features of ore–forming fluids for orogenic gold deposits throughout geological time, Minerals 10 (1), 50 (2020).

    Article  Google Scholar 

  25. V. Yu. Prokofiev, Yu. G. Safonov, V. Lüders, A. A. Borovikov, A. A. Kotov, T. M. Zlobina, K. Yu. Murashov, M. A. Yudovskaya, and S. L. Selektor, “The sources of mineralizing fluids of orogenic gold deposits of the Baikal–Patom and Muya areas, Siberia: constraints from the C and N stable isotope compositions of fluid inclusions,” Ore Geol. Rev. 111, 102988 (2019).

    Article  Google Scholar 

  26. E. Roedder, Fluid Inclusions, Rev. Mineral. 12, 1984.

  27. J. R. Ridley and L. W. Diamond, “Fluid chemistry of orogenic lode gold deposits and implications for genetic models gold in 2000,” SEG Rev. 13, 141–162 (2000).

    Google Scholar 

  28. D. V. Rundquist, “Time factor in the formation of hydrothermal deposits: periods, epochs, megastages, and stages of ore formation,” Geol. Ore Deposits 39 (1), 8–19 (1997).

    Google Scholar 

  29. V. L. Rusinov, O. V. Rusinova, S. G. Kryazhev, et al., “Wall-rock metasomatism of carbonaceous terrigenous rocks in the Lena gold district,” Geol. Ore Deposits 50 (1), 1–40 (2008).

    Article  Google Scholar 

  30. E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, E. S. Bogomolov, and A. B. Kotov, “Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt,” Geotectonics 45 (5), 349–377 (2011).

    Article  Google Scholar 

  31. E. Yu. Rytsk, E. V. Tolmacheva, S. D. Velikoslavinskii, A. B. Kuznetsov, N. V. Rodionov, A. A. Andreev, and A. M. Fedoseenko, “Results of the study of zircon (SIMS) from granitoids of the Konstantinovskii Stock (area of the Sukhoi Log gold deposit): age, sources, and geological consequences,” Dokl. Earth Sci. 496 (2), 146–150 (2021).

    Article  Google Scholar 

  32. S. D. Sher, Metallogeny of Gold (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  33. A. Yakubchuk, H. Stein, and A. Wilde, “Results of pilot Re–Os dating of sulfides from the Sukhoi Log and Olympiada orogenic gold deposits, Russia,” Ore Geol. Rev. 59, 21–28 (2014).

    Article  Google Scholar 

  34. M. A. Yudovskaya, V. V. Distler, V. Yu. Prokofiev, and N. N. Akinfiev, “Gold mineralisation and orogenic metamorphism in the Lena province of Siberia as assessed from Chertovo Koryto and Sukhoi Log deposits,” Geosci. Front. 7 (3), 453–481 (2016).

    Article  Google Scholar 

  35. Yu. A. Zorin, A. M. Mazukabzov, D. P. Gladkochub, T. V. Donskaya, S. L. Presnyakov, and S. A. Sergeev, “Silurian age of major folding in Riphean deposits of the Baikal–Patom Zone,” Dokl. Earth Sci. 423 (2), 1235–1239 (2008).

    Article  Google Scholar 

Download references

Funding

This study was carried out under government-financed research project for the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Kotov or V. Yu. Prokofiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, A.A., Prokofiev, V.Y., Volkov, A.V. et al. Quartz-Hosted Fluid Inclusions in Commercial Ores of Various Type at the Verninskoe Gold Deposit, Bodaibo District, Russia. Geochem. Int. 61, 517–528 (2023). https://doi.org/10.1134/S0016702923040079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923040079

Keywords:

Navigation