Skip to main content
Log in

Sr, Nd, Pb, and Os Isotope Systematics and Derivation of Mesozoic Plume-Related Basalts of Antarctica: Karoo-Maud and Kerguelen Plume Realm

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The study of Re–Os isotopic systematics of the Mesozoic magmas in East Antarctica and its comparison with Sr–Nd–Pb–Os published data allowed us to reveal the main features of Antarctic magmatism associated with the activity of the Karoo–Maud (Dronning Maud Land (DML), Karoo and Ferrar provinces) and the Kerguelen (Lambert rift area) plumes. It is shown that a melt source of the 180-Ma Karoo–Maud plume could be enriched lithospheric mantle. Variations of the 187Os/188Os ratio in the range of 0.1242–0.1426 characterize almost all types of melts in the Karoo and DML provinces, including both high- and low-Ti magmas as well as high-Mg ferropicrites produced by melting of mantle pyroxenite. This observation is consistent with previous assumption that magmas derived from pyroxenite mantle at the initial stage of plume impact represented melts of deep lithospheric fragments of ancient Gondwana paleocontinent that were entrapped by plume. Thereby, mantle heterogeneity recorded in the Nd–Pb–Sr isotopic compositions of the basalts is not expressed in the systematic variations of Re–Os isotope system. The magmatic source of the basalts of the Ferrar province differs from the source of Mesozoic magmatism in the Karoo and DML provinces by great variations in the 187Os/188Os ratio: from 0.1 to 0.31, and by the lower osmium contents, with limited variations of other isotopic systems, indicating an admixture of enriched EM-II source. This is consistent with inferred subduction reworking of the mantle of the western Antarctic margin (Sushchevskaya et al., 2022). Ultramafic picritic magmas from the Lambert Glacier area are characterized by a radiogenic osmium isotopic composition: 187Os/188Os 0.1582–0.2388. Source of these magmas could be ancient depleted mantle, which later experienced mantle metasomatism due to the multiple interactions with fluid-saturated melts. Picritic melts of the paleorift zone of the Lambert Glacier are close to a magma source of the Karoo and DML provinces in terms of Sr-Nd isotopic composition, but differ in more radiogenic lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. In spite of the existence of alternative hypotheses for the origin of large igneous provinces, which is often related to incomplete deep seismic sounding data and processing methods (Korenaga et al., 2002; Korenaga, 2011), our papers since 2008 are based on and develop the deep mantle plume model (Sushchevskaya et al., 2009). Recent new data reported in the overview by Melankholina (2021) indicate the decisive role of mantle plumes in the formation of large igneous provinces.

REFERENCES

  1. D. L. Anderson, “The thermal state of the upper mantle; no role for mantle plumes,” Geophys. Res. Lett. 27, 3623–3626 (2000).

    Article  Google Scholar 

  2. A. V. Andronikov, “Minerals of deep-seated origin from alkaline-ultrabasic rocks of East Anatrctica,” In Geological–Geophysical Studied in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 48–53 (1987) [in Russian].

    Google Scholar 

  3. A. V. Andronikov and J. W. Sheraton, “The redox state of the lithospheric upper mantle beneath the East Antarctic Shield,” Terra Antarct. 3, 39–48 (1996).

    Google Scholar 

  4. A. V. Andronikov, I. E. Andronikova, and T. Sidorinova, “Trace–element geochemistry of sulfides in upper mantle lherzolite xenoliths from East Antarctica,” Minerals 11, 773. https://doi.org/10 (2021).3390/min1107077

  5. P. Armienti and P. Longo, “Three-dimensional representation of geochemical data from a multidimensional compositional space,” Inter. J. Geosci. 2, 231–239 (2011).

    Article  Google Scholar 

  6. N. T. Arndt and U. Christensen, “The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints,” J. Geophys. Res. 97 (B7), 10967–10981 (1992).

    Article  Google Scholar 

  7. J. Austermann, B. T. Kaye, J. X. Mitrovica, and P. Huybers, “A statistical analysis of the correlation between large igneous provinces and lower mantle seismic structure,” Geophys. J. Int. 197, 1–9 (2014).

    Article  Google Scholar 

  8. M. Baes, S. Sobolev, T. Gerya, and S. Brune, “Plume-induced subduction initiation: single-slab or multi–slab subduction?” Geochem. Geophys. Geosyst. 21, e2019GC008663. https://doi.org/10 (2020).1029/2019GC008663

  9. B. V. Belyatsky and A. V. Andronikov, “Age of the upper mantle beneath Lake Beaver (East Antarctica): Sm-Nd isotopic systematics of mantle xenoliths,” Probl. Arkt. Antarkt. 78 (4), 146–169 (2009).

    Google Scholar 

  10. P. G. Betts, W. G. Mason, and L. Moresi, “The influence of a mantle plume head on the dynamics of a retreating subduction zone,” Geology 40 (8), 739–742 (2012).

    Article  Google Scholar 

  11. J. L. Birck, M. R. Barman, and F. Capmas, “Re-Os isotopic measurements at the femtomole level in natural samples,” Geostand. Newslett. 20, 19–27 (1997).

    Article  Google Scholar 

  12. R. E. Botcharnikov, H. Holtz, J. E. Mungall, O. Beermann, R. L. Linnen, and D. Garbe-Schönberg, “Behavior of gold in a magma at sulfide-sulfate transition: revisited,” Am. Mineral. 98, 1459–1464 (2013).

    Article  Google Scholar 

  13. C. M. Brauns, J. M. Hergt, J. D. Woodhead, and R. Maas, “Os isotopes and the origin of the Tasmanian dolerites,” J. Petrol. 41, 905–918 (2000).

    Article  Google Scholar 

  14. J. M. Brenan, “Re–Os fractionation by sulfide melt-silicate melt partitioning: a new spin,” Chem. Geol. 248, 140–165 (2008).

    Article  Google Scholar 

  15. A. I. Buikin, I. P. Solovova, A. B. Verchovsky, L. N. Kogarko, and A. A. Averin, “PVT-parameters of fluid inclusions and the C, O, N, and Ar isotopic composition in a garnet lherzolite xenolith from the Oasis Jetty, East Antarctica,” Geochem. Int. 52 (10), 805–821 (2014).

    Article  Google Scholar 

  16. S. J. H. Buiter and T. H. Torsvik, “A review of Wilson cycle plate margins: a role for mantle plumes in continental break–up along sutures?,” Gondwana Res. 26, 627–653 (2014).

    Article  Google Scholar 

  17. S. D. Burgess, S. A. Bowring, T. H. Fleming, and D. H. Elliot, “High-precision geochronology links the Ferrar large igneous province with early-Jurassic anoxia and biotic crisis,” Earth Planet. Sci. Lett. 415, 90–99 (2015).

    Article  Google Scholar 

  18. K. Burke, “Plate tectonics, the Wilson cycle, and mantle plumes: geodynamics from the top,” Ann. Rev. Earth Planet. Sci. 39, 1–29 (2011).

    Article  Google Scholar 

  19. K. Burke and J. F. Dewey, “Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks,” J. Geol. 81, 406–433 (1973).

    Article  Google Scholar 

  20. K. Burke, B. Steinberger, T. H. Torsvik, and M. A. Smethurst, “Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary,” Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  21. K. W. Burton, A. Gannoun, J.-L. Birck, C.-J. Allegre, P. Schiano, R. Clocchiatti, and O. Alard, “The compatibility of rhenium and osmium in natural olivine and their behavior during mantle melting and basalt genesis,” Earth Planet. Sci. Lett. 198, 63–76 (2002).

    Article  Google Scholar 

  22. R. Cai, J. Liu, D. G. Pearson, D. Li, Y. Xu, S.-A. Liu, Z. Chu, L.-H. Chen, and Sh. Li, “Oxidation of the deep big mantle wedge by recycled carbonates: constraints from highly siderophile elements and osmium isotopes,” Geochim. Cosmochim. Acta 295, 207–223 (2021).

    Article  Google Scholar 

  23. I. H. Campbell, “Large igneous provinces and the mantle plume hypothesis,” Elements 1, 265–269 (2005).

    Article  Google Scholar 

  24. I. H. Campbell, “Testing the plume theory,” Chem. Geol. 241, 153–176 (2007).

    Article  Google Scholar 

  25. I. H. Campbell and R. W. Griffiths, “Implications of mantle plumes for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  26. I. H. Campbell and A. C. Kerr, “The great plume debate: testing the plume theory,” Chem. Geol. 241 (3–4), 149–152 (2007).

    Article  Google Scholar 

  27. R. W. Carlson, “Physical and chemical evidence on the cause and source characteristics of flood basalt volcanism,” Austral. J. Earth Sci. 38, 525–544 (1991).

    Article  Google Scholar 

  28. R. W. Carlson, “Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology,” Lithos 82, 249–272 (2005).

    Article  Google Scholar 

  29. Rao N. V. Chalapathi, R. K. Srivastava, A. K. Sinha, and V. Ravikant, “Petrogenesis of Kerguelen mantle plume linked Early Cretaceous ultrapotassic intrusive rocks from the Gondwana sedimentary basins, Damodar Valley, Eastern India,” Earth-Sci. Rev. 136, 96–120 (2014).

    Article  Google Scholar 

  30. J. Chesley, K. Righter, and J. Ruiz, “Large-scale mantle metasomatism: a Re–Os perspective. Earth Planet. Sci. Lett. 219, 49–60 (2004).

    Article  Google Scholar 

  31. S. H. Choi, S. B. Mukasa, G. Ravizza, T. H. Fleming, B. D. Marsh, and J. H.J. Bédard, “Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys,” Earth Planet. Sci. Lett. 506, 507–519 (2019).

    Article  Google Scholar 

  32. M. F. Coffin, M. S. Pringle, R. A. Duncan, T. P. Gladezenko, M. Storey, R. D. Muller, and L. A. Gahagan, “Kerguelen hotspot magma output since 130 Ma,” J. Petrol. 43, 1121–1139 (2002).

    Article  Google Scholar 

  33. C. W. Dale, A. Gannoun, K. W. Burton, T. W. Argles, and I. J. Parkinson, “Rhenium-osmium isotope and elemental behavior during subduction of oceanic crust and the implications for mantle recycling,” Earth Planet. Sci. Lett. 253, 211–225. https://doi.org/10.1016/j.epsl.2006.10.029

  34. C. W. Dale, C. G. Macpherson, D. G. Pearson, S. J. Hammond, and R. J. Arculus, “Inter-element fractionation of highly siderophile elements in the Tonga arc due to flux melting of a depleted source,” Geochim. Cosmochim. Acta 89, 202–225 (2012).

    Article  Google Scholar 

  35. I. W.D. Dalziel, L. A. Lawver, and J. B. Murphy, “Plumes, orogenesis, and supercontinental fragmentation,” Earth Planet. Sci. Lett. 178, 1–11 (2000).

    Article  Google Scholar 

  36. J. M.D. Day, “Hotspot volcanism and highly siderophile elements,” Chem. Geol. 341, 50–74 (2013).

    Article  Google Scholar 

  37. G. Deplech, J. -P. Lorand, M. Gregoire, J.-Y. Cottin, and S. O’Reilly, “In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean,” Lithos 154, 296–314.https://doi.org/10.1016/j.lithos.2012.07.018

  38. R. A. Duncan, P. R. Hooper, J. Rehacek, J. S. Mash, and A. R. Duncan, “The timing and duration of the Karoo igneous event, southern Gondwana,” J. Geophys. Res., Solid Earth 102, 18127–18138 (1997).

    Article  Google Scholar 

  39. M. East, R. D. Müller, S. Williams, and S. Zahirovic, “Subduction history reveals Cretaceous superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events,” Gondwana Res. 79, 125–139 (2020).

    Article  Google Scholar 

  40. R. M. Ellam and K. G. Cox, “A Proterozoic lithospheric source for Karoo magmatism: evidence from the Nuanetsi picrites,” Earth Planet. Sci. Lett. 92, 207–218 (1989).

    Article  Google Scholar 

  41. R. M. Ellam, R. W. Carlson, and S. B. Shirey, “Evidence from Re–Os isotopes for plume–lithosphere mixing in Karoo flood basalt genesis,” Nature 359 (6397), 718–721 (1992).

    Article  Google Scholar 

  42. D. H. Elliot and T. H. Fleming, “Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana,” Geology 28, 539–542 (2000).

    Article  Google Scholar 

  43. D. H. Elliot and T. H. Fleming, “Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica,” Gondwana Res. 7, 223–237 (2004).

    Article  Google Scholar 

  44. D. H. Elliot and T. H. Fleming, “Physical volcanology and geological relationships of the Jurassic Ferrar Large Igneous Province, Antarctica,” J. Volcanol. Geotherm. Res. 172, 20–37 (2008).

    Article  Google Scholar 

  45. D. H. Elliot and T. H. Fleming, “The Ferrar Large Igneous Province: field and geochemical constraints on supra-crustal (high-level) emplacement of the magmatic system,” GSL Spec. Publ. 463, 41–58 (2018).

    Article  Google Scholar 

  46. D. H. Elliot and T. H. Fleming, “Ferrar Large Igneous Province: petrology. GSL Memoirs. 55, 93–119 (2021). https://doi.org/10 (2021).1144/M55-2018–39

  47. R. E. Ernst and K. L. Buchan, “Large mafic magmatic events through time and links to mantle-plume heads,” GSA Spec. Pap. 352, 483–575 (2001).

    Google Scholar 

  48. R. E. Ernst and K. L. Buchan, “Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces,” J. Geodynam. 34, 309–342 (2002).

    Article  Google Scholar 

  49. R. E. Ernst and K. L. Buchan, “Recognizing mantle plumes in the geological record,” Ann. Rev. Earth Planet. Sci. 31, 469–523 (2003).

    Article  Google Scholar 

  50. R. E. Ernst, D. A. Liikane, S. M. Jowitt, K. L. Buchan, and J. A. Blanchard, “A new plumbing system framework for mantle plume-related continental large igneous provinces and their mafic-ultramafic intrusions,” J. Volcanol. Geotherm. Res. 384, 75–84 (2019).

    Article  Google Scholar 

  51. W. G. Ernst, “Speculations on evolution of the terrestrial lithosphere-asthenosphere system – plumes and plates,” Gondwana Res. 11, 38–49 (2007).

    Article  Google Scholar 

  52. C. G. Farnetani and M. A. Richards, “Numerical investigations of the mantle plume initiation model for flood basalt events,” J. Geophys. Res. 99 (B7), 13813–13833 (1994).

    Article  Google Scholar 

  53. F. Ferraccioli, P. C. Jones, M. L. Curtis, P. T. Leat, and T. R. Riley, “Tectonic and magmatic patterns in the Jutulstraumen rift (?) region, East Antarctica, as imaged by high-resolution aeromagnetic data,” Earth Planet. Space. 57, 767–780 (2005).

    Article  Google Scholar 

  54. M. Fletcher, D. A. Wyman, and S. Zahirovic, “Mantle plumes, triple junctions and transforms: a reinterpretation of Pacific Cretaceous-Tertiary LIPs and the Laramide connection,” Geosci. Front. 11, 1133–1144 (2020).

    Article  Google Scholar 

  55. S. F. Foley, A. V. Andronikov, D. E. Jacob, and S. Melzer, “Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift,” Geochim. Cosmochim. Acta. 70, 3096–3120 (2006).

    Article  Google Scholar 

  56. S. F. Foley, A. V. Andronikov, J. A. Halpin, N. R. Daczko, and D. E. Jacob, “Mantle rocks in East Antarctica. GSL Mem. 56, (2021). https://doi.org/10 (2021).1144/M56-2020–8

  57. R. O. C. Fonseca, G. Mallmann, HSt. C.O. O’Neill, and I. H. Campbell, “How chalcophile is rhenium? An experimental study of the solubility of Re in sulphide matters,” Earth Planet. Sci. Lett. 260, 537–548 (2007).

    Article  Google Scholar 

  58. G. R. Foulger, Plates vs Plumes: a Geological Controversy (Wiley–Blackwell, Chichester, 2010).

    Book  Google Scholar 

  59. G. R. Foulger, J. H. Natland, D. C. Presnell, and D. L. Anderson, “Plates, plumes, and paradigms,” GSA Spec. Paper. 388, (2005).

  60. F. A. Frey, N. J. McNaughton, D. R. Nelson, Laeter J. R. de, and R. A. Duncan, “Petrogenesis of the Bunbury Basalt, Western Australia: interaction between the Kerguelen plume and Gondwana lithosphere,” Earth Planet. Sci. Lett. 144, 163–183 (1996).

    Article  Google Scholar 

  61. A. Gannoun, K. W. Burton, J. M. D. Day, J. Harvey, P. Schiano, and I. Parkinson, “Highly siderophile element and Os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings,” Rev. Mineral. Geochem. 81, 651–724 (2016).

    Article  Google Scholar 

  62. T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev, and S. A. Whattam, “Plate tectonics on the Earth triggered by plume-induced subduction initiation,” Nature 527, 221–225 (2015).

    Article  Google Scholar 

  63. A. Ghatak and A. R. Basu, “Isotopic and trace element geochemistry of alkalic–mafic–ultramafic-carbonatitic complexes and flood basalts in NE India: origin in a heterogeneous Kerguelen plume,” Geochim. Cosmochim. Acta 115, 46–72 (2013).

    Article  Google Scholar 

  64. P. P. Giacomoni, C. Bonadiman, F. Casetta, B. Faccini, C. Ferlito, L. Ottolini, A. Zanetti, and M. Coltorti, “Long-term storage of subduction-related volatiles in Northern Victoria Land lithospheric mantle: insight from olivine-hosted melt inclusions from McMurdo basic lavas (Antarctica),” Lithos 378–379, 105826 (2020). https://doi.org/j.lithos.2020 (2020).105826

  65. J. W. Goodge, “Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma,” Gondwana Res. 80, 50–122 (2020).https://doi.org/10.1016/j.gr.2019.11.001

  66. G. Hagen-Peter and J. M. Cottle, “Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: insights into magmatic sources and processes within a continental arc,” Lithos 262, 677–698 (2016).

    Article  Google Scholar 

  67. S. R. Hart, “A large-scale isotope anomaly in the southern hemisphere mantle,” Nature 309, 753–757 (1984).

    Article  Google Scholar 

  68. J. Harvey, A. Gannoun, K. W. Burton, N. W. Rogers, P. Schiano, and O. Alard, “Unravelling the effects of melt depletion and secondary infiltration on mantle Re–Os isotopes beneath the French Massif Central,” Geochim. Cosmochim. Acta 74, 293–320 (2010).

    Article  Google Scholar 

  69. J. Harvey, C. W. Dale, A. Gannoun, and K. W. Burton, “Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis,” Geochim. Cosmochim. Acta 75, 5574–5596 (2011).

    Article  Google Scholar 

  70. R. Hassan, N. Flament, M. Gurnis, D. J. Bower, and D. Müller, “Provenance of plumes in global convection models,” Geochem. Geophys. Geosyst. 16, 1465–1489 (2015). https://doi.org/10 (2015).1002/2015GC005751

    Article  Google Scholar 

  71. A. R. Hastie and A. C. Kerr, “Mantle plume or slab window?: physical and geochemical constraints on the origin of the Caribbean oceanic plateau,” Earth-Sci. Rev. 98, 283–293 (2010).https://doi.org/10.1016/j.earscirev.2009.11.001

  72. D. He, Y. Liu, F. Moynier, S. F. Foley, and Ch. Chen, “Platinum group element mobilization in the mantle enhanced by recycled sedimentary carbonate,” Earth Planet. Sci. Lett. 541, 116262 (2020).https://doi.org/10.1016/j.epsl.2020.116262

  73. J. S. Heinonen and A. V. Luttinen, “Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources,” Lithos 105 (3–4), 347–364 (2008).

    Article  Google Scholar 

  74. J. S. Heinonen, R. W. Carlson, and A. V. Luttinen, “Isotopic (Sr, Nd, Pb, and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: a key to the origins of the Jurassic Karoo large igneous province?,” Chem. Geol. 277, 227–244 (2010).

    Article  Google Scholar 

  75. J. S. Heinonen, R. W. Carlson, T. R. Riley, A. V. Luttinen, and M. F. Horan, “Subduction-modified oceanic crust mixed with a depleted mantle reservoir in the sources of the Karoo continental food basalt province,” Earth Planet. Sci. Lett. 394, 229–241 (2014).

    Article  Google Scholar 

  76. J. S. Heinonen, R. W. Carlson, A. V. Luttinen, and W. A. Bohrson, “Enriched continental flood basalts from depleted mantle melts: modeling lithospheric contamination of Karoo lavas from Antarctica. Contrib. Mineral. Petrol. 171, 121–129 (2016).

    Article  Google Scholar 

  77. J. S. Heinonen, A. V. Luttinen, and M. J. Whitehouse, “Enrichment of 18O in the mantle sources of the Antarctic portion of the Karoo large igneous province. Contrib. Mineral. Petrol. 173, 21–37 (2018). https://doi.org/10 (2018).1007/s00410-018-1447–4

    Article  Google Scholar 

  78. J. M. Hergt, B. W. Chappell, M. T. McCulloch, I. McDougall, and A. R. Chivas, “Geochemical and isotopic constraints on the origin of the Jurassic dolerites of Tasmania,” J. Petrol. 30, 841–883 (1989).

    Article  Google Scholar 

  79. J. M. Hergt, D. W. Peate, and C. J. Hawkesworth, “The petrogenesis of Mesozoic Gondwana low-Ti flood basalts,” Earth Planet. Sci. Lett. 105, 134–148 (1991).

    Article  Google Scholar 

  80. P. J. Heron, “Mantle plumes and mantle dynamics in the Wilson cycle,” GSL Spec. Publ. 470, 87–103 (2019). https://doi.org/10 (2019).1144/SP470-2018–97

  81. C. Herzberg, P. D. Asimow, N. Arndt, Y. Niu, C. M. Lesher, J. G. Fitton, M. J. Cheadle, and A. D. Saunders, “Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites,” Geochem. Geophys. Geosyst. 8 (2), Q02006, 1–34 (2007). https://doi.org/10 (2007).1029/ 2006GC001390

  82. R. I. Hill, I. H. Campbell, G. F. Davies, and R. W. Griffiths, “Mantle plumes and continental tectonics,” Science 256 (5054), 186–193 (1992).

    Article  Google Scholar 

  83. van D. J.J. Hinsbergen, B. Steinberger, C. Guilmette, M. Maffione, D. Gurer, K. Peters, A. Plunder, P. J. McPhee, C. Gaina, E. L. Advokaat, R. L.M. Vissers, and W. Spakman, “A record of plume-induced plate rotation triggering subduction initiation,” Nature Geosci. 14, 626–630 (2021). https://doi.org/10.1038/s41561-021-00780-7

    Google Scholar 

  84. A. W. Hofmann and S. R. Hart, “Another nail in which coffin? Science 315, 39–40 (2007).

    Article  Google Scholar 

  85. S. Ingle, D. Weis, J. S. Scoates, and F. A. Frey, “Relationship between the earlier Kerguelen plume and continental flood basalts of the paleo-eastern Gondwanan margins,” Earth Planet. Sci. Lett. 197, 35–50 (2002).

    Article  Google Scholar 

  86. S. Ingle, J. S. Scoates, D. Weis, G. Brügmann, and R. W. Kent, “Origin of Cretaceous continental tholeiites in southwestern Australia and eastern India: insights from Hf and Os isotopes,” Chem. Geol. 209, 83–106 (2004).

    Article  Google Scholar 

  87. D. A. Ionov, W. L. Griffin, and S. Y. O’Reilly, “Volatile-bearing minerals and lithophile trace elements in the upper mantle,” Chem. Geol. 141, 153–184 (1997).

    Article  Google Scholar 

  88. A. V. Ivanov, S. Meffre, J. Thompson, F. Corfu, V. S. Kamenetsky, M. B. Kamenetsky, and E. I. Demonterova, “Timing and genesis of the Karoo-Ferrar large igneous province: new high precision U-Pb data for Tasmania confirm short duration of the major magmatic pulse,” Chem. Geol. 455, 32–43 (2017).

    Article  Google Scholar 

  89. A. M. Jellinek and M. Manga, “Links between long-lived hot spots, mantle plumes, D”, and plate tectonics. Rev. Geophys. 42, 1–35 (2004). https://doi.org/10(2004).1029/ 2003RG000144

  90. F. Jourdan, H. Bertrand, U. Sharer, J. Blichert-Toft, G. Feraud, A. B. Kampunzu, Gall B. Le, and M. K. Watkeys, “Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution,” J. Petrol. 48, 1043–1077 (2007).

    Article  Google Scholar 

  91. R. Kent, “Lithospheric uplift in eastern Gondwana: evidence for a long-lived mantle plume system?,” Geology 19, 19–23 (1991).

    Article  Google Scholar 

  92. R. W. Kent, M. Storey, and A. D. Saunders, “Large igneous provinces: sites of plume impact or plume incubation? Geology 20, 891–894 (1992).

    Article  Google Scholar 

  93. A. C. Kerr, A. D. Saunders, J. Tarney, N. H. Berry, and V. L. Hards, “Depleted mantle-plume geochemical signatures: no paradox for plume theories,” Geology 23 (9), 843–846 (1995).

    Article  Google Scholar 

  94. R. A. Kerr, “Rising plumes in Earth’s mantle: phantom or real?,” Science 313, 726 (2006).

    Article  Google Scholar 

  95. R. A. Kerr, “The deep Earth machine is coming together,” Science 340, 22–24 (2013).https://doi.org/10.1126/science.340.6128.22

  96. A. Koptev, E. Burov, E. Calais, S. Leroy, T. Gerya, L. Guillou-Frottier, and S. Cloetingh, “Contrasted continental rifting via plume-craton interaction: applications to Central East African Rift,” Geosci. Front. 7, 221–236 (2016). https://doi.org/10.1016/j.gsf.2015.11.002

    Article  Google Scholar 

  97. J. Korenaga, “Plate tectonics, flood basalts and the evolution of Earth’s oceans,” Terra Nova 20, 419–439 (2008). https://doi.org/10.1111/j.1365-3121.2008.00843.x

    Article  Google Scholar 

  98. J. Korenaga, “Velocity-depth ambiguity and the seismic structure of large igneous province: a case study from the Ontog Java Plateau. Geophys. J. Int. 185, 1022–1036 (2011). https://doi.org/10.1111/j.1365-246X.2011.04999.2011.x

    Article  Google Scholar 

  99. J. Korenaga, P. B. Kelemen, and W. S. Holbrook, “Methods for resolving the origin of large igneous provinces from crustal seismology,” J. Geophys. Res. 107 (B9), 2178 (2002). https://doi.org/10.1029/2001JB001030

    Article  Google Scholar 

  100. M. J. Kranendonk, “Two types of Archean continental crust: plume and plate tectonics on early Earth,” Am. J. Sci. 310, 1187–1209 (2010). https://doi.org/10.2475/10.2010.01

    Article  Google Scholar 

  101. R. Sh. Krymsky, A. V. Antonov, B. V. Belyatskii, N. M. Sushchevskaya, and S. A. Sergeev, “The Age and evolution of the lithospheric mantle in the East Antarctic Craton: osmium isotope composition and the distribution of platinum group elements in spinel lherzolite nodules,” Dokl. Earth Sci. 48 (6), 444–449 (2019).

    Article  Google Scholar 

  102. R. Sh. Krymsky, D. S. Sergeev, G. E. Bryugmann, S. S. Shevchenko, A. V. Antonov, B. V. Belyatskii, and S. A. Sergeev, “Experience in study of isotope composition of osmium and PGE distribution in peridotites of lithospheric mantle of East Antarctica,” Regional. Geol. Metallogen. 46, 51–60 (2011).

    Google Scholar 

  103. A. Kumar, A. M. Dayal, and V. M. Padmakumari, “Kimberlite from Rajmahal magmatic province: Sr-Nd–Pb isotopic evidence for Kerguelen plume derived magmas,” Geophys. Res. Lett. 30 (20), 2053 (2003). https://doi.org/10.1029/2003GL018462

    Article  Google Scholar 

  104. R. G. Kurinin, A. S. Grinson, and Tszun In Dun, “Lambert Glacier rift zone as possible alkaline-ultrabasic province in East Anarctica,” Dokl. Akad. Nauk SSSR 299, 944–947 (1988).

    Google Scholar 

  105. P. R. Kyle, D. H. Elliot, and J. F. Sutter, “Jurassic Ferrar Supergroup tholeiites from the Transantarctic Mountains, Antarctica, and their relation to the initial fragmentation of Gondwana,” In: Gondwana Five: Proceedings of the Fifth Gondwana Symposium, Wellington, New Zealand, Ed. by M. M. Cresswall and P. Vella, (Balkema, Rotterdam, 1981), pp. 283–287.

  106. A. A. Laiba, A. V. Andronikov, L. S. Egorov, and L. V. Fedorov, “Stock and dike bodies of alkaline-ultrabasic composition in the Jetty Oasis (Prince Charles Mountains, East Antarctica),” in Geological-Geophysical Studies in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 35–46 [in Russian].

  107. G. L. Leitchenkov, N. M. Sushchevskaya, and B. V. Belyatskii, “Geodynamics of the Atlantic and Indian Sectors of the South Ocean,” Dokl. Earth Sci. 391 (5), 675–678 (2003).

    Google Scholar 

  108. G. Leitchenkov, J. Guseva, V. Gandyukhin, G. Grikurov, Y. Kristoffersen, M. Sand, A. Golynsky, and N. Aleshkova, “Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies,” Marine Geophys. Res. 29, 135–158 (2008).

    Article  Google Scholar 

  109. G. L. Leitchenkov, E. P. Dubinin, A. L. Grokholskii, and G. D. Agranov, “Formation and evolution of microcontinents of the Kerguelen Plateau, Southern Indian Ocean,” Geotectonics 52 (5), 499–515 (2018).

    Article  Google Scholar 

  110. Zh.-X. Li and Sh. Zhong, “Supercontinent-superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics,” Phys. Earth Planet. Inter. 176, 143–156 (2009). https://doi.org/10.1016/j.pepi.2009.05.004

    Article  Google Scholar 

  111. J. Liu, R. L. Rudnick, R. J. Walker, Sh. Gao, F. Wu, and Ph. M. Piccoli, “Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes,” Earth Planet. Sci. Lett. 297, 287–297. https://doi.org/10.1016/j.epsl.2010.06.030

  112. F. C. Lohmann, M. Hort, and J. Ph. Morgan, “Flood basalts and ocean island basalts: a deep source or shallow entrainment?,” Earth Planet. Sci. Lett. 284, 553–563. https://doi.org/10.1016/j.epsl.2009.05.025

  113. J.-P. Lorand, O. Alard, A. Luguet, and R. R. Keays, “Sulfur and selenium systematics of the subcontinental lithospheric mantle: inferences from the Massif Central xenolith suite (France),” Geochim. Cosmochim. Acta 67, 4137–4151 (2003).

    Article  Google Scholar 

  114. J.-P. Lorand, A. Luguet, and O. Alard, “Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review,” Lithos. 164–167, 2–21 (2013). https://doi.org/10.1016/j.lithos.2012.08.017

    Article  Google Scholar 

  115. A. Luguet and L. Reisberg, “Highly siderophile element and 187Os signatures in non-cratonic basalt-hosted peridotite xenoliths: unraveling the origin and evolution of the post-Archean lithospheric mantle,” Rev. Mineral. Geochem. 81, 305–367 (2016).

    Article  Google Scholar 

  116. M. Lustrino, G. R. Foulgrer, M. Hole, and J. H. Natland, “Constraints on the formation of basaltic magmas. Comment on “Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth—a review and new perspectives”—by Niu Y (2001), Earth–Sci. Rev. 226, 103942 (2022). https://doi.org/10.1016/j.earscirev.2022.103942

    Article  Google Scholar 

  117. A. V. Luttinen, “Bilateral geochemical asymmetry in the Karoo large igneous province,” Sci. Rept. 8, 5223–5234 (2018).

    Article  Google Scholar 

  118. A. V. Luttinen and H. Furnes, “Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica,” J. Petrol. 41, 1271–1305 (2000). https://doi.org/10.1093/petrology/41.8.1271

    Article  Google Scholar 

  119. A. V. Luttinen, J. S. Heinonen, M. Kurhila, F. Jourdan, I. Mänttäri, S. K. Vuori, and H. Huhma, “Depleted mantle-sourced CFB magmatism in the Jurassic Africa–Antarctica Rift: petrology and 40Ar/39Ar and U/Pb chronology of the Vestfjella dyke swarm, Dronning Maud Land, Antarctica,” J. Petrol. 56, 919–952 (2015). https://doi.org/10.1093/petrology/egv022

    Article  Google Scholar 

  120. A. V. Luttinen, P. T. Leat, and H. Furnes, “Björnnutane and Sembberget basalt lavas and the geochemical provinciality of Karoo magmatism in western Dronning Maud Land, Antarctica,” J. Volcanol. Geotherm. Res. 198, 1–18 (2010).https://doi.org/10.1016/j.jvolgeores.2010.07.011

  121. G. Mallmann and H. St.C. O’Neill, “The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting,” Geochim. Cosmochim. Acta. 71, 2837–2857 (2007).

    Article  Google Scholar 

  122. M. K. McNutt, “Another nail in the plume coffin?,” Science 313, 394–396 (2006).

    Article  Google Scholar 

  123. Th. Meisel, L. Reisberg, J. Moser, J. Carignan, F. Melcher, and G. Brügmann, “Re–Os systematics of UB-N, a serpentinized peridotite reference material,” Chem. Geol. 201, 161–179 (2003).

    Article  Google Scholar 

  124. Th. Meisel, R. J. Walker, A. J. Irving, and J.-P. Lorand, “Osmium isotopic compositions of mantle xenoliths: a global perspective,” Geochim. Cosmochim. Acta 65, 1311–1323 (2001).

    Article  Google Scholar 

  125. E. N. Melankholina, “Relationship between superficial and deep tectonics in the African region based on geological–geophysical data,” Geotectonics 55 (6), 864–873 (2021).

    Article  Google Scholar 

  126. E. N. Melankholina and N. M. Sushchevskaya, “Tectono-magmatic evolution of the South Atlantic continental margins with respect to opening of the ocean,” Geotectonics 52 (2), 173–193 (2018).

    Article  Google Scholar 

  127. E. N. Melankholina and N. M. Sushchevskaya, “Tectonics of the Southern Ocean passive margins in the Africa–East Antarctica region,” Geotectonics 53 (4), 468–484 (2019).

    Article  Google Scholar 

  128. M. Melchiorre, M. Coltorti, C. Bonadiman, B. Faccini, S. Y. O’Reilly, and N. J. Pearson, “The role of eclogite in the rift-related metasomatism and Cenozoic magmatism of Northern Victoria Land, Antarctica,” Lithos 124, 319–330 (2011).

    Article  Google Scholar 

  129. M. Molzahn, L. Reisberg, and G. Worner, “Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica: evidence for an enriched subcontinental lithospheric source,” Earth Planet. Sci. Lett. 144, 529–546 (1996).

    Article  Google Scholar 

  130. W. J. Morgan, “Convective plumes in the lower mantle,” Nature 230, 42–44 (1971).

    Article  Google Scholar 

  131. N. Mortimer, D. Parkinson, J. I. Raine, C. J. Adams, I. J. Graham, P. J. Oliver, and K. Palmer, “Ferrar magmatic province rocks discovered in New Zealand: implications for Mesozoic Gondwana geology,” Geology 23, 185–188 (1995).

    Article  Google Scholar 

  132. J. E. Mungall and J. M. Brenan, “Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements,” Geochim. Cosmochim. Acta 125, 265–289 (2014).

    Article  Google Scholar 

  133. J. E. Mungall, J. J. Hanley, N. T. Arndt, and A. Debecdelievre, “Evidence from meimechites and other low-degree mantle melts for redox controls on mantle-crust fractionation of platinum group elements,” PNAS 103, 12695–12700 (2006).

    Article  Google Scholar 

  134. C. Natali, L. Beccaluva, G. Bianchini, and F. Siena, “Comparison among Ethiopia-Yemen, Deccan, and Karoo continental flood basalts of central Gondwana: insights on lithosphere versus asthenosphere contributions in compositionally zoned magmatic provinces,” GSA Spec. Pap. 526, 191–215. https://doi.org/10.1130/2017.2526(10)

  135. E.-R. Neumann, H. Svensen, C. Y. Galerne, and S. Planke, “Multistage evolution of dolerites in the Karoo Large Igneous Province, Central South Africa,” J. Petrol. 52, 959–984 (2011).

    Article  Google Scholar 

  136. Y. L. Niu, “Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth—a review and new perspectives,” Earth–Sci. Rev. 217, 103614 (2021).

    Article  Google Scholar 

  137. Y. L. Niu, “Paradigm shift for controls on basalt magmatism: discussion with Lustrino et al. on the paper I recently published in Earth-Science Reviews,” Earth–Sci. Rev. 226, 103943 (2002).https://doi.org/10.1016/j.earthscirev.2022.103943

  138. M. D. Norman, M. O. Garcia, V. S. Kamenetsky, L. Roger, and R. L. Nielsen, “Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics,” Chem. Geol. 183, 143–168 (2002).

    Article  Google Scholar 

  139. H. K. H. Olierook, R. E. Merle, and F. Jourdan, “Toward a Greater Kerguelen large igneous province: evolving mantle source contributions in and around the Indian Ocean,” Lithos 282–283, 163–172 (2017).

    Article  Google Scholar 

  140. K. S. Panter and A. P. Martin, “West Antarctic mantle deduced from mafic magmatism,” GSL Memoirs. 56, 1–17 (2021). https://doi.org/10.1144/M56-2021-10

    Article  Google Scholar 

  141. K. S. Panter, Y. Li, J. L. Smellie, J. Blusztajn, J. Reindel, K. Odegaard, M. J. Spicuzza, and S. Hart, “Mantle sources and melting processes beneath East Antarctica: geochemical and isotopic (Sr, Nd, Pb, O) characteristics of alkaline and tholeiite basalt from the Earth’s southernmost (87° S) volcanoes,” Contrib. Mineral. Petrol. 177, 51 (2021). https://doi.org/10.1007/s00410-022-01914-9

    Article  Google Scholar 

  142. J. F. Pernet-Fisher, G. H. Howarth, D. G. Pearson, S. Woodland, P. H. Barry, N. P. Pokhilenko, L. N. Pokhilenko, A. M. Agashev, and L. A. Taylor, “Plume impingement on the Siberian SCLM: evidence from Re–Os isotope systematics,” Lithos 218–219, 141–154 (2015). https://doi.org/10.1016/j.lithos.2015.01.010

    Article  Google Scholar 

  143. V. N. Puchkov, “The controversy over plumes: who is actually right?,” Geotectonics 43 (1), 1–17 (2009).

    Article  Google Scholar 

  144. T. Radhakrishna, G. S. Soumya, and K. V.V. Satyanarayana, “Palaeomagnetism of the Cretaceous lamproites from Gondwana basin of the Damodar Valley in India and migration of the Kerguelen plume in the Southeast Indian Ocean,” J. Geodynamics. 109, 1–9 (2017).

    Article  Google Scholar 

  145. C. W. Rapela, R. J. Pankhurst, C. M. Fanning, and F. Herve, “Pacifc subduction coeval with the Karoo mantle plume: the early Jurassic subcordilleran belt of northwestern Patagonia,” GSL Spec. Publ. 246, 217–239 (2005).

    Article  Google Scholar 

  146. L. Reisberg, “Osmium isotope constraints on formation and refertilization of the non–cratonic continental mantle lithosphere,” Chem. Geol. 574, 120245 (2021). https://doi.org/10.1016/j.chemgeo.2021.120245

    Article  Google Scholar 

  147. M. A. Richards, R. A. Duncan, and V. E. Courtillot, “Flood basalts and hot-spot tracks: plume heads and tails,” Science 246, 103–107 (1989).

    Article  Google Scholar 

  148. K. Righter and E. K. Hauri, “Compatibility of rhenium in garnet during mantle melting and magma genesis,” Science 280, 1737–1741 (1998).

    Article  Google Scholar 

  149. T. R. Riley, P. T. Leat, M. L. Curtis, I. L. Millar, R. A. Duncan, and A. Fazel, “Early–Middle Jurassic dolerite dykes from western Dronning Maud Land (Antarctica): identifying mantle sources in the Karoo Large Igneous Province,” J. Petrol. 46, 1489–1524 (2005).

    Article  Google Scholar 

  150. T. R. Riley, T. A. Jordan, P. T. Leat, M. L. Curtis, and I. L. Millar, “Magmatism of the Weddell Sea rift system in Antarctica: implications for the age and mechanism of rifting and early stage of the Gondwana breakup,” Gondwana Res. 79, 185–196 (2020).

    Article  Google Scholar 

  151. M. Roy-Barman and C. J. Allegre, “187Os/186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle,” Earth Planet. Sci. Lett. 129, 145–161 (1995).

    Article  Google Scholar 

  152. A. D. Saunders, R. W. England, M. K. Reichow, and R. V. White, “A mantle plume origin for the Siberian traps: uplift and extension in the West Siberian Basin, Russia,” Lithos 79, 407–424 (2005). https://doi.org/10.1016/j.lithos.2004.09.010

    Article  Google Scholar 

  153. J. M. Scott, D. G. Pearson, J. Liu, A. Auer, A. F. Cooper, D. Li, M. C. Palmer, S. E. Read, M. R. Reid, and S. J. Woodland, “Osmium isotopes in peridotite xenoliths reveal major mid-Proterozoic lithosphere formation under the Transantarctic Mountains,” Geochim. Cosmochim. Acta 312, 25–43 (2021). https://doi.org/10.1016/j.gca.2021.08.009

    Article  Google Scholar 

  154. A. Segev, “Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes),” EGU Stephean Muller Spec. Publ. Ser. 2, 171–191 (2002).

    Article  Google Scholar 

  155. R. Senda, K. Shimizu, and K. Suzuki, “Ancient depleted mantle as a source of boninites in the Izu-Bonin-Mariana arc: evidence from Os isotopes in Cr-spinel and magnetite,” Chem. Geol. 439, 110–119 (2016). https://doi.org/10.1016/j.chemgeo.2016.06.018

    Article  Google Scholar 

  156. S. B. Shirey and R. J. Walker, “The Re–Os isotope system in cosmochemistry and high temperature geochemistry,” Ann. Rev. Earth Planet. Sci. 26, 423–500 (1998).

    Article  Google Scholar 

  157. N. H. Sleep, “Hotspots and mantle plumes – some phenomenology,” J. Geophys. Res. Solid Earth 95 (B5), 6715–6736 (1990).

    Article  Google Scholar 

  158. N. H. Sleep, “Mantle plumes from top to bottom,” Earth-Sci. Rev. 77, 231–271 (2006).

    Article  Google Scholar 

  159. J. L. Smellie, K. S. Panter, and A. Geyer, “Introduction to volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up,” GSL Mem. 55, 1–6 (2021). https://doi.org/10.1144/M55-2020-14

    Article  Google Scholar 

  160. A. V. Sobolev, N. A. Krivolutskaya, and D. V. Kuzmin, “Petrology of the parental melts and mantle sources of Siberian trap magmatism,” Petrology 17 (3), 253–286 (2009).

    Article  Google Scholar 

  161. S. V. Sobolev, A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutskaya, A. G. Arndt N.T. Petrunin, V. A. Radko, and Y. R. Vasiliev, “Linking mantle plumes, large igneous provinces and environmental catastrophes,” Nature 477, 312–316 (2011). https://doi.org/10.1038/nature10385

    Article  Google Scholar 

  162. I. P. Solovova, L. N. Kogarko, and A. A. Averin, “Conditions of Sulfide Formation in the Metasomatized Mantle beneath East Antarctica,” Petrology 23 (6), 519–542 (2015).

    Article  Google Scholar 

  163. B. C. Storey, “The role of mantle plumes in continental breakup: case histories from Gondwanaland,” Nature 377, 301–308 (1995). https://doi.org/10.1038/377301a0

    Article  Google Scholar 

  164. M. Storey, R. W. Kent, A. D. Saunders, V. J. Salters, J. Hergt, H. Whitechurch, J. H. Sevigny, M. F. Thirlwall, P. Leat, N. C. Ghose, and M. Gifford, “Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau,” Proc. Ocean Drill. Prog. Sci. Results 120, 33–53 (1992).

    Google Scholar 

  165. N. M. Sushchevskaya, B. V. Belyatsky, G. L. Leichenkov, and A. A. Laiba, “Evolution of the Karoo–Maud mantle plume in Antarctica and its influence on the magmatism of the early stages of Indian Ocean opening,” Geochem. Int. 47 (1), 1–17 (2009).

    Article  Google Scholar 

  166. N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribubution and evolution of plume magmatism in East Antarctica,” In: Volcanology, Ed. by Fr. Stoppa (INTECH, Rijeka, 2011), pp. 3–29.

    Google Scholar 

  167. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. Sh. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Ya. V. Bychkova, “Geochemical features of the Quaternary lamproitic lavas of Gaussberg volcano, East Antarctica: result of the impact of the Kerguelen plume,” Geochem. Int. 52 (12), 1030–1048 (2014).

    Article  Google Scholar 

  168. N. M. Sushchevskaya, B. V. Belyatsky, E. P. Dubinin, and O. V. Levchenko, “Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica,” Geochem. Int. 55 (9), 775–791 (2017).

    Article  Google Scholar 

  169. N. M. Sushchevskaya, B. V. Belyatsky, D. A. Tkacheva, G. L. Leitchenkov, D. V. Kuzmin, and A. V. Zhilkina, “Early Cretaceous alkaline magmatism of East Antarctica: peculiarities, conditions of formation, and relationship with the Kerguelen plume,” Geochem. Int. 56 (11), 1051–1070 (2018).

    Article  Google Scholar 

  170. N. M. Sushchevskaya, B. V. Belyatskyi, G. L. Leichenkov, V. G. Batanova, and A. V. Sobolev, “Geochemical characteristics of Jurassic plume magmatism in Ahlmannryggen Massif (Queen Maud Land, East Antarctica),” Dokl. Earth Sci. 486 (1), 529–532 (2019).

    Article  Google Scholar 

  171. N. M. Sushchevskaya, A. V. Sobolev, G. L. Leitchenkov, V. G. Batanova, B. V. Belyatsky, and A. V. Zhilkina, “Role of pyroxenite mantle in the formation of the Mesozoic Karoo plume melts: evidence from the Western Queen Maud Land, East Antarctica,” Geochem. Int. 59 (4), 357–376 (2021).

    Article  Google Scholar 

  172. N. M. Sushchevskaya, G. L. Leitchenkov, B. V. Belyatsky, and A. V. Zhilkina, “Evolution of the Karoo-Maud plume and formation of Mesozoic igneous provinces in Antarctica,” Geochem. Int. 60 (6), 509–529 (2022).

    Article  Google Scholar 

  173. K. Suzuki, R. Senda, and K. Shimizu, “Osmium behavior in a subduction system elucidated from chromian spinel in Bonin Island beach sands,” Geology 39, 999–1002 (2011).

    Article  Google Scholar 

  174. T. H. Torsvik, M. A. Smethurst, K. Burke, and B. Steinberger, “Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle,” Geophys. J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  175. T. H. Torsvik, B. Steinberger, L. D. Ashwal, P. V. Doubrovine, and R. G. Tronnes, “Earth evolution and dynamics—a tribute to Kevin Burke,” Can. J. Earth Sci. 53 (11), 1073–1087 (2016).

    Article  Google Scholar 

  176. C. L. Waters, J. M.D. Day, S. Watanabe, K. Sayit, V. Zanon, K. M. Olson, B. B. Hanan, and E. Widom, “Sulfide mantle source heterogeneity recorded in basaltic lavas from the Azores,” Geochim. Cosmochim. Acta 268, 422–445.https://doi.org/10.1016/j.gca.2019.10.012

  177. R. S. White and D. P. McKenzie, “Magmatism at rift zones: the generation of volcanic continental margins and flood basalts,” J. Geophys. Res. Solid Earth 94 (B6), 7685–7729 (1989).

    Article  Google Scholar 

  178. R. S. White and D. P. McKenzie, “Mantle plumes and flood basalts,” J. Geophys. Res. 100, 17543–17585 (1995).

    Article  Google Scholar 

  179. E. Widom, “Recognizing recycled osmium,” Geology 39, 1087–1088 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.M. Savatenkov (IPGG RAS) and anonymous reviewer for careful reviewing of the manuscript and valuable comments that significantly improved the paper, as well as A.I. Buikin for editing the paper.

Funding

This work was supported by the government-financed task of GEOKHI RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Sushchevskaya, B. V. Belyatsky, G. L. Leitchenkov or R. Sh. Krymsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Belyatsky, B.V., Leitchenkov, G.L. et al. Sr, Nd, Pb, and Os Isotope Systematics and Derivation of Mesozoic Plume-Related Basalts of Antarctica: Karoo-Maud and Kerguelen Plume Realm. Geochem. Int. 61, 43–61 (2023). https://doi.org/10.1134/S001670292301007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292301007X

Keywords:

Navigation