Skip to main content
Log in

Thermodynamic Properties of Pectolite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Pectolite H1.00Na0.96Ca2.00\({\text{Mn}}_{{0.02}}^{{2 + }}\)Si3.00O9 from nepheline−feldspathic veins in the Kovdor massif, Kola Peninsula, Russia, was studied by X-ray diffraction (XRD), IR and Raman spectrometry, microprobe analysis (EPMA), and thermal analysis. The enthalpy of formation of pectolite HNaCa2Si3O9.from elements ∆fH° (298.15 K) = –4651.0 ± 4.3 kJ/mol was determined by melt solution calorimetry on a Setaram Tian–Calvet (France) microcalorimeter. The enthalpy of formation of serandite HNaMn2Si3O9, the manganese end member of the pectolite–serandite isomorphic series, was determined to be ΔH(298.15 K) = −4052.6 ± 4.4 kJ/mol. The absolute entropies and Gibbs energies of pectolite and serandite were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. J. Buerger, “The determination of the crystal structure of pectolite, Ca2NaHSi3O9,” Z. Kristallogr. 108, 248–262 (1956).

    Article  Google Scholar 

  2. N. V. Chukanov and I. V. Pekov, “Infra-red spectroscopy of acid salts. I. Silicate Minerals,” Zap. Ross. Mineral. O-va 141 (3), 129–143 (2012).

    Google Scholar 

  3. V. Correcher, J. Garcia-Guinea, M. Castillejo, M. Oujja, E. Rebollar, and P. Lopes-Arce, “Laser-induced fluorescence and thermoluminescence response of a Na–Ca rich silicate,” Radiat. Measur. 41, 971–975 (2006).

    Article  Google Scholar 

  4. S. Fritsch and A. Navrotsky, “Thermodynamic properties of manganese oxides,” J. Am. Ceram. Soc. 79 (7), 1761–1768 (1996).

    Article  Google Scholar 

  5. R. L. Frost, A. Lópes, F. L. Theiss, A. W. Romano, and R. Scholz, “A vibrational spectroscopic study of the silicate mineral pectolite—NaCa2Si3O8(OH),” Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 134, 58–62 (2015).

    Article  Google Scholar 

  6. V. M. F. Hammer, E. Libowitzky, and G. Rossman, “Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2Si3O8(OH), and serandite NaMn2Si3O8(OH),” Am. Mineral. 83, 569–576 (1998).

    Article  Google Scholar 

  7. G. Yu. Ivanyuk and V. N. Yakovenchuk, Minerals of Kovdor (Kolsk. Nauchn. Ts., 1997) [in Russia].

    Google Scholar 

  8. S. D. Jacobsen, J. R. Smyth, R. J. Swope, and R. I. Sheldon, “Two proton position in the very strong hydrogen bond of serandite, NaMn2Si3O8(OH),” Am. Mineral. 85, 745–752 (2000).

    Article  Google Scholar 

  9. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  10. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites – heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Article  Google Scholar 

  11. R. H. Mitchell, M. D. Welch, A. R. Kampf, A. K. Chakhmouradian, and J. Spratt, “Barrydawsonite-(Y), Na1.5Y0.5CaSi3O9H: a new pyroxenoid of the pectolite – serandite group,” Mineral. Mag. 79 (3), 671–686 (2015).

    Article  Google Scholar 

  12. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th Edition (Wileys, 2009).

    Google Scholar 

  13. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric Determination of the Enthalpy of Formation for Pyrophyllite,” Russ. J. Phys. Chem. A. 85 (9), 1492–1494 (2011).

    Article  Google Scholar 

  14. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta. 403, 251–256 (2003).

    Article  Google Scholar 

  15. M. J. Origlieri, R. T. Downs, H. Yang, D. R. Hoffman, M. N. Ducea, and J. E. Post, “Marshallsussmanite, NaCaMnSi3O8(OH), a new pectolite-group mineral providing insight into hydrogen bonding in pyroxenoids,” Mineral. Mag. 85 (3), 444–453 (2021).

    Article  Google Scholar 

  16. C. T. Prewitt, “Refinement of the structure of pectolite, Ca2NaHSi3O9,” Z. Kristallogr. 125 (8), 298–316 (1967).

    Article  Google Scholar 

  17. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” US Geol. Surv. Bull. 2131, (1995).

  18. I. V. Rozhdestvenskaya and V. A. Vasilieva, “Cation ordering and structural deformations in pectolite HNaCa2Si3O9 – serandite HNaMn2Si3O9,” J. Struct Chem. 55 (7), 1268–1276 (2014).

    Article  Google Scholar 

  19. S. Zang, L. Ci, W. Mu, and M. Lu, “NaCa2Si3O8(OH)/PEDOT: PSS composite nanowires as anode materials for lithium-ion batteries,” Chem. Phys. Lett. 715, 40–44 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the administration of the Geological Faculty, Lomonosov Moscow State University, for making available for this study the STOE-STADI MP powder X-ray diffractometer, FSM-1201 FTIR spectrometer, EnSpectr R532 Raman microscope, Q-1500D derivatograph, and Setaram Tian–Calvet microcalorometer that are installed at the faculty.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. P. Ogorodova or Yu. D. Gritsenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Gritsenko, Y.D., Vigasina, M.F. et al. Thermodynamic Properties of Pectolite. Geochem. Int. 61, 75–81 (2023). https://doi.org/10.1134/S0016702923010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923010056

Keywords:

Navigation