Skip to main content
Log in

Effect of Sulfide Sulfur on the Crystallization of Low-Alkali Magmas: Prolegomena

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—The effect of sulfide sulfur on the crystallization of ultramafic–mafic–intermediate magmatic systems is considered in order to assess its scale and direction during the crystallization of rock-forming phases. The study carried out a theoretical analysis of the effect of sulfur on the activity of the components of the silicate melt according to the Korzhinskii’s principle of acid–base interaction. To test the theoretical constructions, published experimental data analyzed to select data allowing a direct comparison of sulfur-saturated and sulfur-free runs. Despite the very limited number of such experiments, they all fit well with theoretically predicted trends. It has been established that the addition of sulfur to the system moderately reduces the liquidus temperature of rock-forming minerals within 20–30°C, and significantly affects their composition. In particular, chrome spinel is enriched in chromium by 10–12 mol % and complementary depleted in aluminum. The composition of plagioclase is enriched in the anorthite component by 3 mol % in dacites and 8 mol % in andesites; this effect was not established in basalts, but its strengthening can be expected. Olivine and orthopyroxene demonstrate an insignificant increase in magnesian content, but the field of their coexistence is significantly reduced in favor of orthopyroxene, which should inevitably lead to a change in their cotectic and peritectic proportions. Natural observations that can be interpreted as the result of the sulfur effect are taken from publications. The results obtained lead to the conclusion that sulfur significantly affects the crystallization of silicate magmas. It follows that the petrological dependences calibrated for sulfur-free experiments should be applied with caution to the interpretation of sulfur-bearing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. A. Ariskin and G. S. Barmina, Simulation of Phase Equilibria during Crystallization of Basaltic Magmas, Ed. by I. D. Ryabchikov (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  2. A. A. Ariskin and G. S. Barmina, “COMAGMAT: Development of a magma crystallization model and its petrologic applications,” Geochem. Int. 42 (Suppl. 1), S1–S157 (2004).

    Google Scholar 

  3. A. A. Ariskin, G. S. Barmina, S. S. Meshalkin, G. S. Nikolaev, and R. R. Almeev, “INFOREX-3.0: A database on experimental studies of phase equilibria in igneous rocks and synthetic systems: II. Data description and petrological applications,” Comp. & Geosci. 22 (10), 1073–1082 (1996).

    Article  Google Scholar 

  4. A. A. Ariskin, S. S. Meshalkin, R. R. Almeev, G. S. Barmina, and G. S. Nikolaev, “INFOREX information retrieval system: analysis and processing of experimental data on phase equilibria in igneous rocks,” Petrology 5 (1), 28–36 (1997).

    Google Scholar 

  5. A. A. Ariskin, L. V. Danyushevsky, K. A. Bychkov, A. W. McNeill, G. S. Barmina, and G. S. Nikolaev, “Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of nickel,” Econ. Geol. 108, 1983–2003 (2013).

    Article  Google Scholar 

  6. A. A. Ariskin, I. S. Fomin, E. V. Zharkova, A. A. Kadik, and G. S. Nikolaev, “Redox conditions during crystallization of ultramafic and gabbroic rocks of the Yoko–Dovyren Massif (based on the results of measurements of intrinsic oxygen fugacity of olivine),” Geochem. Int. 55 (7), 595–607 (2017).

    Article  Google Scholar 

  7. A. A. Ariskin, K. A. Bychkov, G. S. Nikolaev, and G. S. Barmina, “The COMAGMAT-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates,” J. Petrol. 59 (2), 283–298 (2018).

    Article  Google Scholar 

  8. A. Ariskin, L. Danyushevsky, G. Nikolaev, E. Kislov, M. Fiorentini, A. McNeill, Yu. Kostitsyn, K. Goemann, S. T. Feig, and A. Malyshev, “The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility,” Lithos 302–303, 242–262 (2018).

    Article  Google Scholar 

  9. D. R. Baker and R. Moretti, “Modeling the solubility of sulfur in magmas: A 50-year old geochemical challenge,” Rev. Mineral. Geochem. 73, 167–213 (2011).

    Article  Google Scholar 

  10. C. Ballhaus, R. F. Berry, and D. H. Green, “High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle,” Contrib. Mineral. Petrol. 107 (1), 27–40 (1991);

    Article  Google Scholar 

  11. Erratum: (1994) Contrib. Mineral. Petrol. 118(1), 109 (1991).

  12. O. Beermann, R. E. Botcharnikov, F. Holtz, O. Diedrich, and M. Nowak, “Temperature dependence of sulfide and sulfate solubility in olivine-saturated basaltic magmas,” Geochim. Cosmochim. Acta 75, 7612–7631 (2011).

    Article  Google Scholar 

  13. S. Berthet, V. Malavergne, and K. Righter, “Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes,” Geochim. Cosmochim. Acta 73, 6402–6420 (2009).

    Article  Google Scholar 

  14. W. Brownscombe, C. Ihlenfeld, J. Coppard, C. Hartshorne, S. Klatt, J. K. Siikaluoma, and R. J. Herrington, “The Sakatti Cu–Ni–PGE sulfide deposit in Northern Finland,” In Mineral Deposits of Finland, Ed. by W. Maier, R. Lahtinen, and H. O’Brien (Elsevier, Amsterdam, 2015), pp. 211–252.

    Google Scholar 

  15. F. Costa, B. Scaillet, and M. Pichavant, “Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcán San Pedro (36° S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas,” J. Petrol. 45 (4), 855–881 (2004).

    Article  Google Scholar 

  16. L. V. Danyushevsky and P. Plechov, “Petrolog3: Integrated software for modeling crystallization processes,” Geochem. Geophys. Geosyst. 12, Q07021 (2011). https://doi.org/10.1029/2011GC003516

    Article  Google Scholar 

  17. V. P. Dreving and Ya. A. Kalashnikov, Phase Rule with Presentation of Thermodynamic Principles (Mosk. Gos. Univ., Moscow, 1964) [in Russian].

    Google Scholar 

  18. K. Ehlers, T. L. Grove, T. W. Sisson, S. L. Recca, and D. A. Zervas, “The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal,” Geochim. Cosmochim. Acta 56, 3733–3743 (1992).

    Article  Google Scholar 

  19. Lu Feng and Yuan Li, “Comparative partitioning of Re and Mo between sulfide phases and silicate melt and implications for the behavior of Re during magmatic,” Earth Planet. Sci. Lett. 517, 14–25 (2019).

    Article  Google Scholar 

  20. M. E. Fleet, N. D. MacRae, and C. T. Herzberg, “Partition of nickel between olivine and sulfide: a test for immiscible sulfide liquids,” Contrib. Mineral. Petrol. 65, 191–197 (1977).

    Article  Google Scholar 

  21. I. S. Fomin, G. S. Nikolaev, A. A. Ariskin, and E. V. Zharkova, “Comparison of techniques of assessment of redox conditions and the closure temperature of the olivine-Cr-spinel system for rocks of the Yoko-Dovyren layered intrusion,” Proc. 2 nd Youth School “ New in Understanding of Ore Formation Processes,” Moscow, Russia, 2012 (IGEM RAN, 2012), pp. 196–198 [in Russian].

  22. C. E. Ford, D. G. Russell, J. A. Craven, and M. R. Fisk, “Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn,” J. Petrol. 24, 256–265 (1983).

    Article  Google Scholar 

  23. R. L. Ford, G. K. Benedix, T. J. McCoy, and T. Rushmer, “Partial melting of H6 ordinary chondrite Kernouvé: Constraints on the effects of reducing conditions on oxidized compositions,” Meteoritics Planet Sci. 43 (8), 1399–1414 (2008).

    Article  Google Scholar 

  24. G. A. Gaetani and T. L. Grove, “Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars,” Geochim. Cosmochim. Acta 61 (9), 1829–1846 (1997).

    Article  Google Scholar 

  25. K. G. Gardner-Vandy, D. S. Lauretta, and T. J. McCoy, “A petrologic, thermodynamic and experimental study of brachinites: Partial melt residues of an R chondrite-like precursor,” Geochim. Cosmochim. Acta 122, 36–57 (2013).

    Article  Google Scholar 

  26. M. S. Ghiorso and R. O. Sack, “Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures,” Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Article  Google Scholar 

  27. A. V. Girnis, “Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas,” Petrology 11 (2), 101–113 (2003).

    Google Scholar 

  28. A. Holzheid and T. L. Grove, “Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets,” Am. Mineral. 87, 227–237 (2002).

    Article  Google Scholar 

  29. A. Holzheid, M. D. Schmitz, and T. L. Grove, “Textural equilibria of iron sulfide liquids in partly molten silicate aggregates and their relevance to core formation scenarios,” J. Geophys. Res. 105 (B6), 13555–13567 (2000).

    Article  Google Scholar 

  30. S. Jégo and R. Dasgupta, “Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge,” Geochim. Cosmochim. Acta 110, 106–134 (2013).

    Article  Google Scholar 

  31. S. Jégo and M. Pichavant, “Gold solubility in arc magmas: Experimental determination of the effect of sulfur at 1000°C and 0.4 GPa,” Geochim. Cosmochim. Acta 84, 560–592 (2012).

    Article  Google Scholar 

  32. S. Jégo, M. Pichavant, and J. A. Mavrogenes, “Controls on gold solubility in arc magmas: An experimental study at 1000°C and 4 kbar,” Geochim. Cosmochim. Acta 74, 2165–2189 (2010).

    Article  Google Scholar 

  33. P. J. Jugo, R. W. Luth, and J. P. Richards, “An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1.0 GPa,” J. Petrol. 46 (4), 783–798 (2005).

    Article  Google Scholar 

  34. E. V. Kislov, Yoko-Dovyren Layered Massif (BNTs SO RAN, Ulan-Ude, 1998) [in Russian].

  35. E. V. Koptev–Dvornikov, N. S. Aryaeva, and D. A. Bychkov, “Equation of thermobarometer for description of sulfide–silicate liquid immiscibility in basaltic systems,” Petrology 20 (5), 450–466 (2012).

    Article  Google Scholar 

  36. D. S. Korzhinskii, “Acid–base interaction of components in silicate melts and direction of cotectic lines,” Dokl. Akad. Nauk SSSR 128 (2), 383–386 (1959).

    Google Scholar 

  37. D. S. Korzhinskii, “Acidity–alkalinity as the main factor of magmatic and post-magmatic processes,” in Magmatism and Relation with Mineral Resources (Izd-vo AN SSSR, Moscow, 1960), pp. 21–30 [in Russian]

    Google Scholar 

  38. D. S. Korzhinskii, “Drawing thermodynamic potentials of open systems with externally set acidity and reduction,” Geochemical Problems (Nauka, Moscow, 1965a), pp. 128–136.

    Google Scholar 

  39. D. S. Korzhinskii, “Acid–base interaction of components in melts,” The Study of Natural and Technical Mineral Formation (Nauka, Moscow, 1965b), pp. 5–9 [in Russian].

    Google Scholar 

  40. D. S. Korzhinskii, Theoretical Principles of Analysis of Mineral Parageneses (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  41. D. S. Korzhinskii, “Dependence of the iron oxidation state in magma on alkalinity,” Dokl. Akad. Nauk SSSR 238 (4), 948–950 (1978).

    Google Scholar 

  42. V. C. Kress and I. S.E. Carmichael, “The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states,” Contribs. Mineral. Petrol. 108, 82–92 (1991).

    Article  Google Scholar 

  43. J. F. Luhr, “Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón Volcano,” J. Petrol. 31 (5), 1071–1114 (1990).

    Article  Google Scholar 

  44. A. A. Marakushev, “Acid–alkaline properties of anhydrous silicates and aluminosilicates,” Zap. Vsesoyuz. Mineral. O-va, Ser. 2 105 (5), 562–579 (1976a).

    Google Scholar 

  45. A. A. Marakushev, “Method of thermodynamic calculation of basicity index of rocks and minerals,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 51 (1), 5–25 (1976b).

    Google Scholar 

  46. A. A. Marakushev, “Thermodynamic calculation of basicity of chemical elements and simple oxides,” in Essays of Physicochcemical Petrology, Ed. by V. A. Zharikov and V. V. Fedkin (Nauka, Moscow, 1978), Vol. 7, pp. 41–82 (1978) [in Russian].

    Google Scholar 

  47. A. A. Marakushev, Petrogenesis and Ore Formation (Geochemical Aspects) (Nauka, Moscow, 1979) [in Russian].

  48. Y. Marrocchi and G. Libourel, “Sulfur and sulfides in CV chondrules,” Geochim. Cosmochim. Acta. 119, 117–136 (2013).

    Article  Google Scholar 

  49. V. Matjuschkin, J. D. Blundy, and R. A. Brooker, “The effect of pressure on sulphur speciation in mid‑ to deep‑crustal arc magmas and implications for the formation of porphyry copper deposits,” Contrib Mineral Petrol. 171, #66 (2016).

  50. O. Namur, M. Collinet, B. Charlier, T. L. Grove, F. Holtz, and C. McCammon, “Melting processes and mantle sources of lavas on Mercury,” Earth Planet. Sci. Lett. 439, 117–128 (2016a).

    Article  Google Scholar 

  51. O. Namur, B. Charlier, F. Holtz, C. Cartier, and C. McCammon, “Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury,” Earth Planet. Sci. Lett. 448, 102–114 (2016b).

    Article  Google Scholar 

  52. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky, A Handbook of Thermodynamic Balues (for Geologists) (Atomizdat, Moscow, 1971) [in Russian’.

  53. G. S. Nikolaev, A. A. Borisov, and A. A. Ariskin, “New fO2-barometers for quenched glasses of various petrochemical series,” Geochem. Int. 34 (9), 753–756 (1996a).

    Google Scholar 

  54. G. S. Nikolaev, A. A. Borisov, and A. A. Ariskin, “Calculation of the ferric–ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series,” Geochem. Int. 34 (8), 641–649 (1996b).

    Google Scholar 

  55. G. S. Nikolaev, A. A. Ariskin, G. S. Barmina, M. A. Nazarov, and R. R. Almeev, “Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel,” Geochem. Int. 54 (4), 301–320 (2016).

    Article  Google Scholar 

  56. G. S. Nikolaev, A. A. Ariskin, and G. S. Barmina, “SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 Kbar: I. Model formulation, calibration, and tests,” Geochem. Int. 56 (1), 24–45 (2018a).

    Article  Google Scholar 

  57. G. S. Nikolaev, A. A. Ariskin, and G. S. Barmina, “SPINMELT-2.0: Simulation of spinel–melt equilibrium in basaltic systems under pressures up to 15 Kbar: II. Description of the program package, the topology of the Cr-spinel–melt model system, and petrological implications,” Geochem. Int. 56 (2), 125–135 (2018b).

    Article  Google Scholar 

  58. H. St.C. O’Neill and V. J. Wall, “The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle,” J. Petrol. 28 (6), 1169–1191 (1987).

    Article  Google Scholar 

  59. F. Parat, F. Holtz, and S. Feig, “Pre-eruptive conditions of the Huerto andesite (Fish Canyon System, San Juan Volcanic Field, Colorado): Influence of volatiles (C‒O–H–S) on phase equilibria and mineral composition,” J. Petrol. 49 (5), 911–935 (2008).

    Article  Google Scholar 

  60. P. L. Reynolds I. Roeder, “Crystallization of chromite and chromium solubility in basaltic melts,” J. Petrol. 32 (5), 909–934 (1991).

    Article  Google Scholar 

  61. P. L. Roeder and R. F. Emslie, “Olivine–liquid equilibrium,” Contrib. Mineral. Petrol. 29, 275–289 (1970).

    Article  Google Scholar 

  62. R. O. Sack, I. S.E. Carmichael, M. Rivers, and M. S. Ghiorso, “Ferric-ferrous equilibria in natural silicate liquids at 1 Bar,” Contrib. Mineral. Petrol. 75, 369–376 (1980).

    Article  Google Scholar 

  63. P. Sattari, J. M. Brenan, I. Horn, and W. F. McDonough, “Experimental constraints on the sulfide- and chromite–silicate melt partitioning behavior of rhenium and platinum-group elements,” Econ. Geol. 97, 385–398 (2002).

    Article  Google Scholar 

  64. B. Scaillet and B. W. Evans, “The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption PTfO2fH2O Conditions of the Dacite Magma,” J. Petrol. 40 (3), 381–411 (1999).

    Article  Google Scholar 

  65. S. Silventoinen, Composition of Chromite in the Sakatti Cu–Ni–PGE Deposit, Central Lapland Greenstone Belt, Finland, Master`s Thesis (University of Helsinki, Faculty of Science, Department of Geosciences and Geography, 2020).

  66. M. I. Usanovic, “Moderne theorien über säuren und basen,” Wissenschaft und Fortschritt 14, 499–526 (1964).

    Google Scholar 

  67. M. I. Usanovich, “On acids and bases,” Zh. Obshchei Khi-mii 9 (2), 182–192 (1939).

    Google Scholar 

  68. M. I. Usanovich, The Study in the Theories of Solutions and Acids and Bases. Selected Papers (Nauka, Alma–Ata, 1970) [in Russian].

  69. K. E. Vander-Kaaden and F. M. McCubbin, “The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas,” Geochim. Cosmochim. Acta 173, 246–263 (2016).

    Article  Google Scholar 

  70. B. I. Wood, L. T. Bryndzia, and K. E. Johnson, “Mantle oxidation state and its relationship to tectonic environment and fluid speciation,” Science. 248 (4), 337–345 (1990).

    Article  Google Scholar 

  71. O. I. Yakovlev and S. I. Shornikov, “Effect of acid−base interaction at the evaporation of alkaline components from chondrule melts,” Geochem. Int. 60 (5), 401–410 (2022).

    Article  Google Scholar 

  72. V. A. Zharikov, Priciples of Physochemical Geochemistry (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.I. Yakovlev (GEOKHI RAS) for useful comments and advices on the problems raised in this paper. A.V. Girnis (IGEM RAS) is thanked for the kindly given last version of the MELT experimental database and O.A. Lukanin (GEOKHI RAS), for detailed editorial comments that significantly improved the manuscript.

Funding

This work was made in the framework of the government-financed task of the GEOKHI RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Nikolaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, G.S. Effect of Sulfide Sulfur on the Crystallization of Low-Alkali Magmas: Prolegomena. Geochem. Int. 61, 24–42 (2023). https://doi.org/10.1134/S0016702923010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923010044

Keywords:

Navigation