Skip to main content
Log in

REE and Fluorite Mineralization Characteristic in Ryongpho Alkaline Intrusion of the Sakju Complex, DPR Korea

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Alkaline intrusions of the Sakju Complex distributed in the western area, DPR Korea were formed in mid-Proterozoic era. The REE and fluorite mineralization occurs in Ryongpho alkaline intrusion of the Sakju Complex. In general, the most important REE resources are associated with alkaline igneous rocks and carbonatites, although REE deposits are also known from a range of other geological settings. REE deposits associated with alkaline igneous rocks are typically lower grade but with larger tonnage and a higher content of the most critical HREE. The Sakju Complex mostly consists of alkaline pyroxenite, alkaline gabbro, alkaline amphibole syenite and alkaline feldspar syenite which reflect well the magmatic differentiation, and their metasomatic rocks. The contents of REEs in intrusions of the Sakju Complex are much higher than the average contents of the earth’s crust and those in alkaline rocks. The study of the REE and fluorite mineralization characteristic of Ryongpho alkaline intrusion indicates that the contents of REEs and fluorite gradually decrease in the order from alkaline pyroxenite, alkaline gabbro, alkaline amphibole syenite to alkaline feldspar syenite. The constituent rocks have the similar chondrite-normalized REE distribution patterns, i.e., rich in LREE and deficient in HREE, and no or weak negative anomaly of Eu. The REE distribution curves are rightward inclined, indicating LREE > HREE as a whole. REEs are concentrated in the fluorite zone experienced Ca-F metasomatism in alkaline pyroxenite and alkaline gabbro to form a medium-high grade REE ore body. Fluid inclusion data of fluorites in the constituent rocks indicates that the metasomatic temperature is 250–450°C. Also, the total of rare earth element contents in the fluorites range from 1807 to 5201 ppm. The Tb/Ca and Tb/La ratios of fluorites in the constituent rocks varies respectively between 5.68 × 10–6 and 0.277 × 10–6, and between 0.0491 and 0.0074, and these ratios indicate a formation from a hydrothermal and less pegmatite stage. Also, the results suggest that the darker the fluorite color becomes, the stronger the intensity of REE mineralization and fluorite mineralization, and the higher the total REE contents in the rocks become.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. B. Akgul, “Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban-Elazig area, East Anatolia,” Turkey. J. Afr. Earth Sci. 111, 222–230 (2015).

    Article  Google Scholar 

  2. S. Alipour, A. Abedini, and B. Talaei, “Geochemical characteristics of the Qahr-Abad fluorite deposits, south-east of Saqqez, western Iran,” Arab. J. Geosci. 8, 7309–7320 (2015).

    Article  Google Scholar 

  3. M. R. Azizi, A. Abedini, S. Alipour, S. Niroomand, A. Sasmaz, and B. Talaei, “Rare earth element geochemistry and tetrad effect in fuorites, a case study from the Qahr-Abad deposit, Iran,” N. Jb. Palont. Abh. 283 (3), 257–273 (2017).

    Google Scholar 

  4. S. M. Barros De Oliveira and R. A. Liguori Imbernon, “Weathering alteration and related REE concentration in the Catalao I carbonatite Complex, central Brazil,” J. South Am. Earth Sci. 11 (4), 379–388 (1998).

    Article  Google Scholar 

  5. X. Bi and R. Hu, “REE geochemistry of primitive ore fluids in Ailaoshan gold belt, Southwest China,” Chin. J. Geochem. 17 (1), 91–96 (1998).

    Article  Google Scholar 

  6. X. Bi, D. H. Cornell, and R. Hu, “REE composition of primary and altered feldspar from the mineralized alteration zone of alkaline intrusive rocks, western Yunnan Province, China,” Ore Geol. Rev. 19, 69–78 (2002).

    Article  Google Scholar 

  7. A. R. Chakhmouradian and F. Wall, “Rare earth elements, minerals, mines, magnets (and more),” Elements 8 (5), 333–340 (2012).

    Article  Google Scholar 

  8. A. R. Chakhmouradian and A. N. Zaitsev, “Rare earth mineralization in igneous rocks, sources and processes,” Elements. 8 (5), 347–353 (2012).

    Article  Google Scholar 

  9. Q. Chen, P. Zhou, and C. Chen, “REE characteristics of microfine disseminated gold ores in Danzhai, Guizhou,” Chin. J. of Geochem. 17 (2), 175–184 (1998). https://doi.org/10.1007/BF03166841

    Article  Google Scholar 

  10. Y. J. Chen and N. Li, “Nature of ore-fluids of intracontinental intrusion-related hydrothermal deposits and its difference from those in island arcs,” Acta Petrol. Sin. 25, 2477–2508 (2009).

    Google Scholar 

  11. A. J. Desbarats, J. B. Percival, I. Bilot, M. J. Polivchuk, and K. E. Venance, “Drainage chemistry of mine tailings from a carbonatite-hosted Nb–REE deposits, Oka, Quebee, Canada,” Appl. Geochem. 138, (2022). https://doi.org/10.1016/j.apgeochem.2022.105216

  12. H. G. Dill, B. T. Hansen, and B. Weber, “REE contents, REE minerals and Sm/Nd isotopes of granite and unconformity-related fluorite mineralization at the western edge of the Bohemian massif, with special reference to the Nabburg–Wölsendorf District, SE Germany,” Ore Geol. Rev. 40, 132–148 (2011).

    Article  Google Scholar 

  13. H. Downes, E. Balaganskaya, A. Beard, R. Liferovich, and D. Demaiffe, “Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the kola alkaline province: A review,” Lithos 85, 48–75 (2005).

    Article  Google Scholar 

  14. F. Ehya, “Variation of mineralizing fluids and fractionation of REE during the emplacement of the vein-type fluorite deposit at Bozijan, Markazi Province, Iran,” J. Geochem. Explor. 112, 93–106 (2012).

    Article  Google Scholar 

  15. G. E. Eppinger and L. G. Closs, “Variation of trace elements and rare earth elements in fluorite, a possible tool for exploration,” Econ. Geol. 85, 1896–1907 (1990).

    Article  Google Scholar 

  16. K. M. Goodenough, J. Schilling, P. Kalvig, N. Charles, J. Tuduri, E. A. Deany, M. Sadeghi, H. Schiellerup, A. Muller, G. Bertrand, and N. Arvanitidis, “Europe’s rare earth element resource potential, An overview of REE metallogenetic provinces and their geodynamic setting,” Ore Geol. Rev. 72, 838–856 (2016).

    Article  Google Scholar 

  17. A. P. Gysi and A. E. Williams-Jones, “Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada, a reaction path model,” Geochim. Cosmochim. Acta 122, 324–352 (2013).

    Article  Google Scholar 

  18. R. Y. Han and M. S. Kang, Magmatism of Syenite Type and Useful Mineral (Industry Press, Pyongyang, 1999).

    Google Scholar 

  19. G. T. Hill, A. R. Campbell, and P. R. Kyle, “Geochemistry of southwestern New Mexico fluorite occurrences, implications for precious metals exploration in fluorite-bearing systems,” J. Geochem. Explor. 68, 1–20 (2000).

    Article  Google Scholar 

  20. M. S. Kang and S. I. Kang, “Postmagmatic metasomatism characteristics of alkali intrusions in Kusong and Jongju region,” Geol. Geograph. Sci. 2, 20–22 (2005).

    Google Scholar 

  21. M. S. Kang, S. I. Kang, S. K. Li, and K. I. Kim, “Distribution characteristics of REEs in alkali intrusions,” Geol. Geograph. Sci. 4, 7–12 (1993).

    Google Scholar 

  22. M. S. Kang, B. S. Choe, D. M. Ryu, D. H. Ho, and S.U.R. Rim, The Geological Series of Korea (Metallic Mineral) (Industrial Publishing House, Pyongyang, 2011), Vol. 7.

  23. J. Lai, C. Wu, and S. Peng, “REE characteristics and genesis of alkaline-rich porphyry, Yunnan province,” J. CSUT, 8 (1), 45–49 (2001).

    Google Scholar 

  24. P. Möller and G. Morteani, “On the chemical fractionation of REE during the formation of Ca- minerals and its application to problems of the genesis of ore deposits,” The Significance of Trace Elements in Solving Petrogenetic Problems, Ed. by S. Augustithis (Theophrastis Publishers, Athens, 1983), pp. 747–791

    Google Scholar 

  25. P. Möeller, G. Morteani, and F. Schley, “Discussion of REE distribution patterns of carbonatites and alkaline rocks,” Lithos 13, 171–179 (1980).

    Article  Google Scholar 

  26. P. Möller, P. P. Parekh, and H. J. Schneider, “The application of Tb/Ca–Tb/La abundance ratios to problems of flourspar genesis,” Mineral. Deposits 11, 111–116 (1976).

    Article  Google Scholar 

  27. N. Mondillo, M. Boni, G. Balassone, S. Spoleto, A. Marino, L. Santoro, and J. Spratt, “Rare earth element (REE)-Minerals in the Silius fluorite vein system (Sardinia, Italy),” Ore Geol. Rev. 74, 211–224 (2016).

    Article  Google Scholar 

  28. M. Ouabid, O. Raji, J.-M. Dautria, J.-L. Bodinier, F. Parat, H. El Messbahi, C. J. Garrido, and Y. Ahechach, “Petrological and geochemical costraints on the origin of apatite ores from Mesozoic alkaline intrusive complexes, Central High–Atlas, Morocco,” Ore Geol. Rev. 136, https://doi.org/ (2021).https://doi.org/10.1016/j.oregeorev.2021.104250

  29. R. J. Paek, H. G. Kan, K. P. Jon, Y. M. Kim, and Y. H. Kim, Geology of Korea (Foreign Languages Books Publishing House, Pyongyang, 1993).

    Google Scholar 

  30. C. S. Pak and U. J. Ko, “Distribution characteristic of fluorite in Ryongpho alkali intrusion,” Geological Prospecting 2, 6 (2008).

    Google Scholar 

  31. H. Palme and H. S. T. C. O’Neill, “3.1 Cosmochemical estimates of mantle composition,” Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier, Oxford, 2014), pp. 1–39 (2014).

    Google Scholar 

  32. A. Sasmaz and F. Yavuz, “REE geochemistry and fluid inclusion studies of fluorite deposits from the Yaylagzu area (Yildizeli-Sivas) in central Turkey,” N. Jb. Geol. Palaont (Abh). 183, 215–226 (2007).

    Google Scholar 

  33. A. Sasmaz, N. Kryuchenko, E. Zhovinsky, V. Suyarko, N. Konakci, and B. Akgu, “Major, trace and rare earth element (REE) geochemistry of different colored fluorites in the Bobrynets region, Ukraine,” Ore Geol. Rev. 102, 338–350 (2018). https://doi.org/10.1016/j.oregeorev.2018.09.014

    Article  Google Scholar 

  34. J. Schönenberger, J. Köhler, and G. Markl, “REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland,” Chem. Geol. 247, 16–35 (2008).

    Article  Google Scholar 

  35. G. Schwinn and G. Markl, “REE systematics in hydrothermal fluorite,” Chem. Geol. 216, 225–248 (2005).

    Article  Google Scholar 

  36. E. R. Sheard, A. E. Williams-Jones, M. Heiligmann, C. Pederson, and D. I. Trueman, “Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor lake rare metal deposit, Northwest Territories, Canada,” Econ. Geol. 107, 81–104 (2012).

    Article  Google Scholar 

  37. F. Souissi, R. Souissi, and J. L. Dandurand, “The Mississippi valley type (MVT)fluorite ore at Jebel Stah (Zaghouan District, northeastern Tunisia), contribution of REE and Sr isotope geochemistry to the genetic model,” Ore Geol. Rev. 37, 15–30 (2010).

    Article  Google Scholar 

  38. H. S. Tang, Y. J. Chen, G. Wu, and T. Yang, “Rare earth element geochemistry of carbonates of Dashiqiao Formation, Liaohe Group, eastern Liaoning province, implications for Lomagundi event,” Acta Petrol. Sin. 25, 3075–3093 (2009) [in Chinese with English abstract].

    Google Scholar 

  39. V. B. Vasilenko, L. G. Kuznetsova, V. A. Minin, and A. V. Tolstov, “Behavior of major and rare–earth elements during the postmagmatic alteration of kimberlites,” Russ. Geol. Geophys. 53, 62–76 (2012).

    Article  Google Scholar 

  40. P. L. Verplanck, “Rare Earth Element Enrichments in the Elk Creek Carbonatite. Acta Geologica Sinica (English Edition) 88 (supp. 2), 466–467 (2014).

    Article  Google Scholar 

  41. F. Wall, “Rare earth elements,” Critical Metals Handbook, Ed. by A. G. Gunn, (JohnWiley & Sons, 2014), pp. 312–339.

    Google Scholar 

  42. E. A. Williams-Jones and A. A. Migdisov, “Rare earth element transport and deposition by hydrothermal fluids,” Acta Geologica Sinica (English Edition). 88 (suppl. 2), 472–474 (2014).

    Article  Google Scholar 

  43. Z. Zhang, G. Zheng, C. Wu, J. Yao, and C. Xiao, “Extreme enrichment of rare earth elements in hard clay rocksand its potential as a resource,” Ore Geol. Rev. 72, 191–212 (2016).

    Article  Google Scholar 

  44. Z. Zheng and C. Lin, “The behaviour of rare-earth elements (REE) during weathering of granites in Southern Guangxi, China,” Chin. J. Geochem. 15 (4), 344–352 (1996).

    Article  Google Scholar 

  45. T. Zhou, B. Li, and X. Zhang, “REE compositions of sedimentary strata of Guichi stratigraphic region, northern margin of Yangtze Block, and its geologic significance,” J. Rare Earths 14 (3), 210 (1996).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank researchers in the Analytical Research Institute of Kim Il Sung University and Sukchon Analytical Institute and anonymous reviewers for very constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyon Chol Won or Kum Chol Chon.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyon Chol Won, Hwang, P.H. & Chon, K.C. REE and Fluorite Mineralization Characteristic in Ryongpho Alkaline Intrusion of the Sakju Complex, DPR Korea. Geochem. Int. 60, 1452–1461 (2022). https://doi.org/10.1134/S0016702922130109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922130109

Keywords:

Navigation