Skip to main content
Log in

Early Silurian Trench-arc-basin System in Northwestern Margin of the North Qilian Orogen, China: Constraints from U–Pb Zircon Geochronology of Tuffs and Sandstones

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The North Qilian Orogen is considered as a representative oceanic suture zone formed by the closure of the North Qilian Ocean, which forms the northern part of the Proto-Tethys Ocean along the northern margin of the eastern Gondwana during the Early Paleozoic. However, the time interval of Early Paleozoic subduction system remains controversial, especially the part along the northwest margin where it is connected to the Alxa Block. Here we explored the whole rock geochemistry and LA-ICP-MS zircon U–Pb geochronology on a suite of tuff and clastic rocks from the Angzanggou Formation in the west margin of the North Qilian Orogen. Zircon U–Pb dating of tuff samples yielded the eruption ages of ca. 438 Ma. Detrital zircon from clastic rocks have revealed three age populations: 0.4–0.6 Ga (peak at 438 Ma), 0.7–0.9 Ga (peak at 875 Ma), and 0.93–1.1 Ga (peak at 984 Ma). Zircons with U–Pb ages of 0.4–0.6 Ga are markedly different from those of North China Block and Alxa Block, but are similar to zircon ages determined for Qilian Paleozoic arc-related magmatic rocks. Based on previous geochemical and geochronological data from the early Paleozoic igneous and clastic rocks, we believed that the subduction-accretion processes in North Qilian Orogen lasted until the Angzanggou Formation in the Early Silurian, thus leading to the formation of a fore-arc basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. S. D. Boger, C. J. Carson, C. J. L. Wilson, and C. M. Fanning, “Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica; evidence for a single protracted orogenic event,” Precambrian Res. 104, 1–24 (2000).

    Article  Google Scholar 

  2. P. A. Cawood, Y. J. Wang, Y. J. Xu, and G. C. Zhao, “Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere?,” Geology 41, 903–906. (2013)

    Article  Google Scholar 

  3. J. L. Chen, H. B. Li, H. L. Wang, S. P. He, Z. X. Zeng, X. Y. Xu, and X. M. Li, “LA-ICPMS zircon U-Pb dating of a quartz diorite pluton from Wangjiacha, the junction area between the Qinling and Qilian orogenic belts and its tectonic significance,” J. Jilin Univ., Earth Sci. Ed. 37, 423–431 (2007) [in Chinese with English abstract].

    Google Scholar 

  4. H. Cheng, T. Y. Lu, and D. D& Cao, “Coupled Lu–Hf and Sm–Nd geochronology constrains blueschist-facies metamorphism and closure timing of the Qilian Ocean in the North Qilian orogen,” Gondwana Res. 34, 99–108 (2016).

    Article  Google Scholar 

  5. G. E. Christidis and W. D. Huff, “Geological aspects and genesis of bentonites,” Elements 5, 93–98 (2009).

    Article  Google Scholar 

  6. P. G. Decelles, R. P. Langford, and R. K. Schwartz, “Two new methods of paleocurrent determination from trough cross-stratification,” J. Sediment. Res. 53, 629–642 (1983)

    Google Scholar 

  7. W. R. Dickinson and R. Valloni, “Plate setting and provenance of sands in modern ocean basins,” Geology 8, 82–86 (1980).

    Article  Google Scholar 

  8. W. R. Dickinson, D. W. Harbaugh, A. H. Shaller, P. L. Heller, and W. S. Snyder, “Detrital modes of upper Paleozoic sandstones derived from Antler orogen in Nevada: implications for nature of Antler Orogeny,” Am. J. Sci. 283, 481–509 (1983).

    Article  Google Scholar 

  9. S. P. Ding, Early Palaeozoic Tectonic Framework and Evolution in the Junction of Western Qinling Orogenic Belt and Qilian Orogenic Belt, Ph.D. Thesis (Chang’an University, 2008) [in Chinese with English abstract].

  10. M. Domeier, “Early Paleozoic tectonics of Asia: towards a full-plate model,” Geosci. Front. 9 (03), 178–251 (2018).

    Article  Google Scholar 

  11. Y. P. Dong and M. Santosh, “Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China,” Gondwana Res. 29, 1–40 (2016).

    Article  Google Scholar 

  12. Y. S. Du, J. Zhu, and S. Z. Gu, “Sedimentary geochemistry of the Cambrian–Ordovician cherts: implication on archipelagic ocean of the North Qilian orogenic belt,” Sci. China Ser. D Earth Sci. 37, 1314–1329 (2007).

    Google Scholar 

  13. Y. N. Fang, C. D. Wu, Z. J. Guo, K. J. Hou, L. Dong, L. X. Wang, and L. L. Li, “Provenance of the southern Junggar Basin in the Jurassic: evidence from detrital zircon geochronology and depositional environments,” Sediment. Geol. 315, 47-63 (2015).

    Article  Google Scholar 

  14. Y. M. Feng and S. P. He, “Research for geology and geochemistry of several ophiolites in the North Qilian Mountains, China,” Geol. Rev. 40, 252–64 (1995).

    Google Scholar 

  15. G. E. Gehrels, A. Yin, and X. F. Wang, “Detrital zircon geochronology of the northeastern Tibetan plateau,” Geol. Soc. Am. Bull. 115, 881–896 (2003).

    Article  Google Scholar 

  16. G. Gehrels, P. Kapp, P. Decelles, A. Pullen, R. Blakey, A. Weislogel, L. Ding, J. Guynn, A. Martin, and N. Mcquarrie, “Detrital zircon geochronology of pre-Tertiary strata in the Tibetan–Himalayan orogen,” Tectonics 30, C5016 (2011).

    Article  Google Scholar 

  17. Y. S. Geng, X. S. Wang, C. M. Wu, and X. W. Zhou, “Late-Paleoproterozic tectonothermal events of the metamorphic basement in Alxa area: Evidence from geochronology,” Acta Petrol. Sinica 26 (4), 1159–1170 (2010).

    Google Scholar 

  18. X. Y. Guo, R. Gao, S. Z. Li, X. Xu, X. F. Huang, H. Y. Wang, W. H. Li, S. J. Zhao, and X. Y. Li, “Lithospheric architecture and deformation of NE Tibet: new insights on the interplay of regional tectonic processes,” Earth Planet. Sci. Lett. 449, 89–95 (2016).

    Article  Google Scholar 

  19. L. P. Gromet, L. A. Haskin, R. L. Korotev, and R. F. Dymek, “The North American shale composite”: its compilation, major and trace element characteristics,” Geochim. Cosmochim. Acta 48, 2469–2482. (1984)

    Article  Google Scholar 

  20. R. Hall, “Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations,” J. Asian Earth Sci. 20, 353–431 (2002).

    Article  Google Scholar 

  21. Q. Hou, C. L. Mou, Q. Y. Wang, and Z. Y. Tan, “Provenance and tectonic setting of the Early and Middle Devonian Xueshan Formation, the North Qilian Belt, China,” Geol. J. 53 (4), 1404–1422 (2018a).

    Article  Google Scholar 

  22. Q. Hou, C. L. Mou, Q. Y. Wang, Z. Y. Tan, X. Y. Ge, and X. P. Wang, “Geochemistry of sandstones from the Silurian Hanxia Formation, North Qilian Belt, China: implication for provenance, weathering and tectonic Setting,” Geochem. Int. 56 (4), 362–377 (2018b).

    Article  Google Scholar 

  23. Q. Hou, C. L. Mou, Q. Y. Wang, and Z. Y. Tan, “Petrography and geochemistry of the Lower Silurian sandstones from the Angzanggou Formation in the North Qilian Belt, China: implications for provenance, weathering and tectonic setting,” Geol. Mag. 157 (3), 477–496 (2020).

    Article  Google Scholar 

  24. Q. Hou, C. L. Mou, Z. Z. Han, X. Y. Ge, and Q. Y. Wang, “Origin of chert in the Upper Ordovician–Lower Silurian: Implications for the sedimentary environment of North Qilian Orogen,” Earth Environ. Sci. Trans. R. Soc. Edinb. 112 (1), 13–28 (2021).

    Google Scholar 

  25. W. D. Huff, D. Davis, and S. M. Bergström, “A biostratigraphically well constrained K-bentonite U-Pb zircon age of the Lowermost Darriwilian stage (Middle Ordovician) from the Argentine Precordillera,” Episodes 20, 29–33 (1997).

    Article  Google Scholar 

  26. M. Jayananda, J. F. Moyen, H. Martin, J. J. Peucat, B. Auvray, and B. Mahabaleswar, “Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry,” Precambrian Res. 99, 225–254 (2000).

    Article  Google Scholar 

  27. C. M. Ker, H. J. Yang, J. X. Zhang, Y. H. Shau, C. J. Chieh, F. C. Meng, E. Takazawa, and C. F. You, “Compositional and Sr–Nd–Hf isotopic variations of Baijingsi eclogites from the North Qilian orogen, China: causes, protolith origins, and tectonic implications,” Gondwana Res. 28, 721–734 (2015).

    Article  Google Scholar 

  28. R. Laviano and G. Mongelli, “Geochemistry and mineralogy as indicators of parental affinity for Cenozoic bentonites: A case study from S. Croce DiMagliano (southern Apennines, Italy),” Clay Minerals 31, 391–401 (1996).

    Article  Google Scholar 

  29. Y. S. Lee, S. Nishimura, and K. D. Min, “Paleomagnetotectonics of East Asia in the Proto-Tethys Ocean,” Tectonophysics 270, 157–166 (1997).

    Article  Google Scholar 

  30. Z. X. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. Fitzsimons, R. A. Fuck, D. P. Gladkochub, and J. Jacobs, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210. (2008)

    Article  Google Scholar 

  31. X. M. Li, Z. P. Ma, J. M. Sun, and J. Y. Yu, “A LA–ICP–MS chronological study of basic volcanics in Baiyin orefield, Gansu, China,” Geol. Bull. China 28 (7), 901–906 (2009b) [in Chinese with English abstract].

    Google Scholar 

  32. X. Y. Li, S. Z. Li, S. Y. Yu, M. Santosh, S. J. Zhao, X. Y. Guo, H. H. Cao, Y. M. Wang, and Z. B. Huang, “Early Paleozoic arc–back-arc system in the southeastern margin of the North Qilian Orogen, China: Constraints from geochronology, and whole-rock elemental and Sr-Nd-Pb-Hf isotopic geochemistry of volcanic suites,” Gondwana Res. 59, 9–26 (2018).

    Article  Google Scholar 

  33. S. Z. Li, T. M. Kusky, G. C. Zhao, X. C. Liu, L. Wang, H. Kopp, K. Hoernle, G. W. Zhang, and L. M. Dai, “Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie–Sulu orogen, East-Central China,” Tectonophysics, 504, 25–42 (2011).

    Google Scholar 

  34. S. Z. Li, S. J., Zhao, X. Liu, H. H. Cao, S. Yu, X. Y. Li, I. Somerville, S. Y. Yu, and Y. H. Suo, “Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia,” Earth-Sci. Rev. 186, 37—75 (2017).

    Article  Google Scholar 

  35. S. Z. Li, B. M. Jahn, S. J. Zhao, L. M. Dai, X. Y. Li, Y. H. Suo, L. L. Guo, Y. M. Wang, X. C. Liu, H. Y. Lan, Z. Z. Zhou, Q. L. Zheng, and P. C. Wang, “Triassic southeastward subduction of North China Block to South China Block: insights from new geological, geophysical and geochemical data,” Earth-Sci. Rev. 166, 270–285 (2017a).

    Article  Google Scholar 

  36. J. G. Liou, X. Wang, and R. G. Coleman, “Blueschists in major suture zones of China,” Tectonics 8, 609–619 (1989).

    Article  Google Scholar 

  37. Y. S. Liu, S. Gao, Z. C. Hu, C. G. Gao, K. Q. Zong, and D. B. Wang, “Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths,” J. Petrol. 51, 537–571 (2010).

    Article  Google Scholar 

  38. K. R. Ludwig, “Isoplot Ex version 2.49: A geochronological toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ., No. 1, 1–53 (2001).

  39. I. Metcalfe, “Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys,” J. Asian Earth Sci. 66, 1–33 (2013).

    Article  Google Scholar 

  40. D. R. Nelson, “An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons,” Sediment. Geol. 141, 37-60 (2001).

    Article  Google Scholar 

  41. J. A. Pearce, “Basalt geochemistry used to investigate past tectonic environments on Cyprus,” Tectonophysics 25, 41–67 (1975).

    Article  Google Scholar 

  42. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  43. Q. Qian, Y. M. Wang, H. M. Li, X. Q. Jia, S. Han, and Q. Zhang, “Geochemical characteristics and genesis of diorites from Laohushan, Gansu Province,” Acta Petrol. Sinica, 14, 520–528 (1998).

    Google Scholar 

  44. B. Roberts and R. J. Merriman, “Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Paleozoic Welsh marginal basin,” Geol. Mag. 127, 31–43 (1990).

    Article  Google Scholar 

  45. H. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Longman Scientific and Technical Publication, 1993).

    Google Scholar 

  46. M. Santosh, S. Maruyama, and S. Yamamoto, “The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere,” Gondwana Res. 15, 324–341 (2009).

    Article  Google Scholar 

  47. M. Santosh, C. N. Hu, X. F. He, S. S. Li, T. Tsunogae, E. Shaji, and G. Indu, “Neoproterozoic arc magmatism in the southern Madurai block, India: Subduction, relamination, continental outbuilding, and the growth of Gondwana,” Gondwana Res. 45, 1–42. (2017).

    Article  Google Scholar 

  48. E. R. Sobel and N. Arnaud, “A possible middle Paleozoic suture in the Altyn Tagh, NW China,” Tectonics 18, 64–74 (1999).

    Article  Google Scholar 

  49. S. G. Song, L. F. Zhang, Y. Niu, C. J. Wei, J. G. Liou, and G. M. Shu, “Eclogite and carpholitebearing metasedimentary rocks in the North Qilian suture zone, NW China: implications for Early Palaeozoic cold oceanic subduction and water transport into mantle,” J. Metamorph. Geol. 25, 547–563 (2007).

    Article  Google Scholar 

  50. S. G. Song, Y. L. Niu, L. Su, and X. H. Xia, “Tectonics of the North Qilian orogen, NW China,” Gondwana Res. 23, 1378–1401 (2013).

    Article  Google Scholar 

  51. S. R. Taylor, and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985)

    Google Scholar 

  52. C. T. Teale, and D. A. Spears, “The mineralogy and origin of some Silurian bentonites, Welsh Borderland, U.K,” Sedimentology 33, 757–765 (1986).

    Article  Google Scholar 

  53. Y. L. Tian, S. J. Wu, R. Memng, Y. S. Wang, C. L. Lin, and L. Z. Xiao, “LA-ICP-MS zircon U-Pb age of the Jinchuan ultramafic intrusion,” Acta Mineral. Sinica 27 (2), 211–217 (2007).

    Google Scholar 

  54. T. H. Torsvik and L. R. M. Cocks, “Gondwana from top to base in space and time,” Gondwana Res. 24, 999–1030 (2013).

    Article  Google Scholar 

  55. C. Y. Tseng, H. J. Yang, H. Y. Yang, D. Y. Liu, C. Wu, C. K. Cheng, C. H. Chen, and C. M. Ker, “Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: evidence from newly discovered Paleozoic adakitic rocks,” Gondwana Res. 16, 285–293 (2009).

    Article  Google Scholar 

  56. R. T. Tucker, E. M. Roberts, Y. Hu, A. I. S. Kemp, and S. W. Salisbury, “Detrital zircon age constraints for the Winton formation, Queensland: contextualizing Australia’s Late Cretaceous dinosaur faunas,” Gondwana Res. 24, 767–779 (2013).

    Article  Google Scholar 

  57. K. A. Tung, H. J. Yang, H. Y. Yang, D. Y. Liu, J. X. Zhang, Y. S. Wan, and C. Y. Tseng, “SHRIMP U–Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances,” Chinese Sci. Bull. 52, 2687–2701 (2007).

    Article  Google Scholar 

  58. Y. S. Wan, Z. Q. Xu, J. S. Yang, and J. X. Zhang, “The Precambrian high-grade basement of the Qilian terrane and neighboring areas: its ages and compositions,” Acta Geosci. Sinica 24 (4), 319–324 (2003).

    Google Scholar 

  59. C. Y. Wang, Q. Zhang, Q. Qian, and M. F. Zhou, “Geochemistry of the Early Paleozoic Baiyin volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian orogenic belt,” J. Geol. 113 (1), 83–94 (2005).

    Article  Google Scholar 

  60. Y. C. Wang, Geological Characteristics and Tectonic Significance of Caledonian Collision-Post Collision Type Granite at the Conjunction of Qinling and Qilian, Master Thesis (Chang’an University, 2013) [in Chinese with English abstract].

  61. H. Wang, Y. B. Wu, J. H. Yang, Z. W. Qin, R. C. Duan, L. Zhou, and S. H. Yang, “Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: a Sr–Nd–Hf–O isotopic study from the Paleozoic Tongbai orogen, Central China,” Lithos 282–283, 298–315 (2017).

    Article  Google Scholar 

  62. N. Wang, C. L. Wu, M. Li, and H. J. Chen, “Petrogenesis and tectonic implications of the Early Paleozoic granites in the western segment of the North Qilian orogenic belt, China,” Lithos, 312–313, 89–107 (2018).

  63. F. H. Wei, Composition, Structural Characteristics and Geological Evolution of North Qilian Orogen (the eastern) in Early Paleozoic, Master’s Theses (Chang’an University, 2013) [in Chinese with English abstract].

    Google Scholar 

  64. J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

    Article  Google Scholar 

  65. C. L. Wu, S. Z. Yao, and L. S. Zeng, “Double subduction of the Early Paleozoic North Qilian oceanic plate: evidence from granites in the central segment of North Qilian, NW China,” Geol. China 33 (6), 1197–1208 (2006).

    Google Scholar 

  66. C. L. Wu, X. Y. Xu, Q. M. Gao, X. M. Li, M. Lei, Y. H. Gao, R. B. Frost, and J. L. Wooden, “Early Palaezoic grranitoid magmatism and tectonic evolution in North Qilian, NW China,” Acta Petrol. Sinica 26, 1027–1044 (2010).

    Google Scholar 

  67. C. L. Wu, Y. H. Gao, B. R. Frost, P. T. Robinson, J. L. Wooden, S. P. Wu, Q. L. Chen, and M. Lei, “An early Palaeozoic double-subduction model for the North Qilian oceanic plate: evidence from zircon SHRIMP dating of granites,” Int. Geol. Rev. 53, 157–181 (2011).

    Article  Google Scholar 

  68. Y. B. Wu and Y. F. Zheng, “Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu orogenic belt in Central China,” Gondwana Res. 23, 1402–1428 (2013).

    Article  Google Scholar 

  69. S. J. Wu, J. M. Hu, M. H. Ren, W. B. Gong, and Y. Liu, “Petrography and zircon U–Pb isotopic study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic evolution of the Alxa Block, westernmost North China Craton,” J. Asian Earth Sci. 94, 226–239 (2014).

    Article  Google Scholar 

  70. L. Q. Xia, Z. C. Xia, and X. Y. Xu, “Early Paleozoic mid-ocean ridge–ocean island and back-arc basin volcanism in the north Qilian mountains,” Acta Geol. Sinica 72 (4), 301–312 (1998).

    Google Scholar 

  71. L. Q. Xia, Z. C. Xia, and X. Y., Xu, “Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China,” Geol. Soc. Am. Bull. 115, 1510–1522 (2003).

    Article  Google Scholar 

  72. W. J. Xiao, F. W. Brian, and Y. Yong, “Early Paleozoic to Devonian multiple accretionary model for the Qilian Shan, NW Chian,” J. Asian Earth Sci. 35, 323–33 (2009).

    Article  Google Scholar 

  73. S. W. Xie, Y. B. Wu, Z. M. Zhang, Y. C. Qin, X. C. Liu, H. Wang, Z. W. Qin, Q. Liu, and S. H. Yang, “U-Pb ages and trace elements of detrital zircons from Early Cretaceous sedimentary rocks in the Jiaolai Basin, north margin of the Sulu UHP terrane: provenances and tectonic implications,” Lithos 154, 346–360 (2012).

    Article  Google Scholar 

  74. Z. Q. Xu, H. F. Xu, J. X. Zhang, H. B. Li, Z. Z. Zhu, J. C. Qu, D. Z. Chen, J. L. Chen, and K. C. Yang, “The Zoulangnanshan Caledonian subduction complex in the northern Qilian Mountains and its dynamics,” Acta Geol. Sinica 68, 1–15 (1994).

    Google Scholar 

  75. X. Xu, S. G. Song, L. Su, Z. X. Li, Y. L. Niu, and M. B. Allen, “The 600–580 Ma continental rift basalts in North Qilian Shan, northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana,” Precambrian Res. 257, 47–64. (2015).

    Article  Google Scholar 

  76. Z. Yan, W. J. Xiao, Z. Q. Wang, and J. L. Li, “Integrated analyses constraining the provenance of sandstones, mudstones, and conglomerates, a case study: The Laojunshan conglomerate, Qilian orogen, northwest China,” Can. J. Earth Sci. 44 (7), 961–986 (2007).

    Article  Google Scholar 

  77. Z. Yan, W. J. Xiao, B. F. Windley, Z. Q. Wang, and J. L. Li, “Silurian clastic sediments in the North Qian Shan, NW China: chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau,” Sediment. Geol. 231, 98–114 (2010).

    Article  Google Scholar 

  78. Z. Yan, J. Aitchison, C. L. Fu, X. Q. Guo, M. L. Niu, W. J. Xia, and J. L. Li, “Hualong Complex, South Qilian terrane: U–Pb and Lu–Hf constraints on Neoproterozoic microcontinental fragments accreted to the northern Proto-Tethyan margin,” Precambrian Res. 266, 65–85 (2015).

    Article  Google Scholar 

  79. G. Yang, A. D. Du, J. R. Lu, W. J. Qu, and J. F. Chen, “Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni–Cu–PGE deposit,” Sci. China (D) 35 (3), 241–245 (2005).

    Google Scholar 

  80. S. Y. Yu, J. X. Zhang, P. G. Del Real, X. L. Zhao, K. J. Hou, J. H. Gong, and Y. S. Li, “The Grenvillian orogeny in the Altun–Qilian–North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U–Pb age and Hf isotopic study of magmatic rocks,” J. Asian Earth Sci. 73, 372–395 (2013).

    Article  Google Scholar 

  81. S. Y. Yu, J. X. Zhang, H. P. Qin, D. Y. Sun, X. L. Zhao, F. Cong, and Y. S. Li, “Petrogenesis of the early Paleozoic low-Mg and high-Mg adakitic rocks in the North Qilian orogenic belt, NW China: implications for transition from crustal thickening to extension thinning,” J. Asian Earth Sci. 107, 122–139 (2015).

    Article  Google Scholar 

  82. S. Y. Yu, J. X. Zhang, D. Y. Sun, D. R. Pablo García, Y. S. Li, X. L. Zhao, and K. J. Hou, “Petrology, geochemistry, zircon U–Pb dating and Lu–Hf isotope of granitic leucosomes within felsic gneiss from the North Qaidam UHP terrane: constraints on the timing and nature of partial melting,” Lithos 218–219, 1–21 (2015).

    Google Scholar 

  83. W. Yuan and Z. Y. Yang, “Late Devonian closure of the North Qilian Ocean: evidence from detrital zircon U–Pb geochronology and Hf isotopes in the eastern North Qilian Orogenic Belt,” Geol. Rev. 1, 1–17 (2015).

    Google Scholar 

  84. X. M. Zhao, Z. H. Zhang, M. Liu, Y. S. Li, and S. F. Guo, “Zircon U-Pb geochronology, geochemistry and petrogenesis of the granites from the Xiaoliugou deposit in the western of the North Qilian,” Acta Petrol. Sinica 30 (1), 16–34 (2014).

    Google Scholar 

  85. J. X. Zhang, Z. Q. Xu, W. Chen, and H. F. Xu, “A tentative discussion on the ages of the subduction-accretionary complex/volcanic arcs in the middle sector of North Qilian Mountain,” Acta Petrol. Mineral. 16, 112–119 (1997a).

    Google Scholar 

  86. Q. Zhang, X. Sun, D. Zhou, Q. Qian, Y. Chen, Y. Wang, X. Jia, and S. Han, “The characteristics of North Qilian ophiolites, forming settings and their tectonic significance,” Adv. Earth Sci. 12, 366–393 (1997b).

    Google Scholar 

  87. H. F. Zhang, B. R. Zhang, N. Harris, L. Zhang, Y. L. Chen, N. S. Chen, and Z. D. Zhao, “U–Pb zircon SHRIMP ages, geochemical and Sr–Nd–Pb isotopic compositions of intrusive rocks from the Longshan–Tianshui area in the southeast corner of the Qilian orogenic belt, China: constraints on petrogenesis and tectonic affinity,” J. Asian Earth Sci. 27, 751–764 (2006).

    Article  Google Scholar 

  88. J. X. Zhang, J. P. Li, S. Y. Yu, F. C. Meng, C. G. Mattinson, H. J. Yang, and C. M. Ker, “Provenance of eclogitic metasediments in the north Qilian HP/LT metamorphic terrane, western China: Geodynamic implications for early Paleozoic subduction-erosion,” Tectonophysics 570, 78–101 (2012).

    Article  Google Scholar 

  89. J. X. Zhang, S. Y. Yu, Y. S. Li, X. X. Yu, Y. H. Lin, and X. H. Mao, “Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun—Qilian–North Qaidam orogenic system,” Acta Petrol. Sinica 31, 3531–3554 (2015).

    Google Scholar 

  90. J. P. Zheng, W. L. Griffin, M. Sun, S. Y. O’Reilly, H. F. Zhang, H. W. Zhou, L. Xiao, H. Y. Tang, and Z. H. Zhang, “Tectonic affinity of the west Qinling terrane (Central China): North China or Yangtze?” Tectonics 29, 339–341 (2010).

    Article  Google Scholar 

  91. Y. F. Zheng, “Metamorphic chemical geodynamics in continental subduction zones,” Chem. Geol. 328, 5–48 (2012).

    Article  Google Scholar 

  92. K. Q. Zong, Y. S. Liu, C. G. Gao, Z. C. Hu, S. Gao, and H. J. Gong, “In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultra-high-pressure metamorphism of the Sulu terrane, China,” Chem. Geol. 269, 237–251 (2009).

    Article  Google Scholar 

  93. G. Zuo and J. Liu, “The evolution of tectonic of early Paleozoic in North Qilian range, China,” Sci. Geol. Sinica 1, 14–24 (1987).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is financially supported by the National Natural Science Foundation of China (No. 41772113). We thank the journal reviewers for their very constructive and helpful comments, which helped to improve the manuscript.

Funding

National Natural Science Foundation of China, Grant/Award Numbers: 41772113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlong Mou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Mou, C. & Hou, Q. Early Silurian Trench-arc-basin System in Northwestern Margin of the North Qilian Orogen, China: Constraints from U–Pb Zircon Geochronology of Tuffs and Sandstones. Geochem. Int. 60, 1415–1438 (2022). https://doi.org/10.1134/S0016702922130079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922130079

Keywords:

Navigation