Skip to main content
Log in

Is the Permian–Triassic Mass Extinction Related to the Siberian Traps?

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Siberian Traps are believed to play an essential role in the Permian–Triassic extinction event, although the link between these events is unclear. Plume ascent, its interaction with the lithosphere, and crustal rocks are considered as sources of volatile components that trigger mass extinction. Reliable estimations of the volumes of gases released during the basalt magma degassing that formed typical traps are few. In this work, the volatile contents in the parental melt of the Southern Maslovsky intrusion, which is a part of the PGE–Cu–Ni Maslovsky deposit in the Norilsk district in the Northwest Siberian Platform, were determined. The studied intrusion belongs to the ore-bearing Norilsk intrusive complex, which is coeval to the Morongovsky–Mokulaevsky Formations of the Siberian flood basalt province. The objects of this study were 8 silicate-melt inclusions in olivines from picritic gabbro-dolerites and 68 inclusions in clinopyroxenes, and 2 inclusions in olivines from olivine-bearing gabbro-dolerites. The composition of the parental melt in terms of major and trace element abundances was close to the main stage of the platform magmatism. The average volatile contents in melt inclusions were as follows: 4500 ppm H2O and Cl 1333 ppm, followed by trace amounts of F 387 ppm, S 743 ppm, CO2 1279 ppm, and B 4.18 ppm, typical of within-plate magmas. In addition, the contacts of igneous rocks with sedimentary deposits (carbonate-terrigenous rocks and coals) demonstrate the occurrence of narrow zones of alteration and the absence of a significant volume of gases that could influence the process of species extinction. There is no strict evidence of the influence of the Siberian traps on the Permian–Triassic mass extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 5.
Fig. 6.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. A. I. Al’mukhamedov, A. Y. Medvedev, and V. V. Zolotukhin, “Evolutions of Permo–Triassic basalts of the Siberian Platform in time and space,” Petrology 12, 339–353 (2004).

    Google Scholar 

  2. V. S. Aplonov, “Fluid regime and platinum potential problems of basic differentiated intrusions,” Platinum of Russia (Geoinformmark, Moscow, 1995), pp. 102–106 [in Russian].

    Google Scholar 

  3. N. Arndt, K. Lehnert, and Y. Vasil’ev, “Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle,” Lithos 34, 41–59 (1995).

    Article  Google Scholar 

  4. N. T. Arndt, G. K. Czamamanske, R. J. Walker, C. Chauvel, and V. A. Fedorenko, “Geochemistry and origin of the intrusive hosts of the Noril’sk–Talnakh Cu–Ni–PGE sulfide deposits,” Econ. Geol. 98, 495–515 (2003).

    Google Scholar 

  5. S.-J. Barnes, Vaillant M. Le, B. Godel, and M. Lesher, “Droplets and bubbles: Solidification of sulfide-rich vapor-saturated orthocumulates in the Norilsk–Talnakh Ni–Cu–PGE intrusions,” J. Petrol. 60, 269–300 (2019).

    Article  Google Scholar 

  6. O. A. Betekhtina and N. K. Mogucheva, “On the age of volcanogenic pile of the Tunguska syneclise,” In Stratigraphy, Triassic flora and fauna in Siberia (Tr. Inst. Geol. Geofiz., 1984), pp. 4–8 [in Russian].

    Google Scholar 

  7. B. A. Black, L. T. Elkins-Tanton, M. C. Rowe, and I. U. Peate, “Magnitude and consequence and volatile realized from the Siberian traps,” Earth Planet. Sci. Lett. 317–318, 363–373 (2012).

    Article  Google Scholar 

  8. B. A. Black, H. E. H. Auri, L. T. Elkins-Tanton, and S. M. Brown, “Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas,” Earth Planet. Sci. Lett. 394, 58–69 (2014).

    Article  Google Scholar 

  9. D. P.G. Bond and S. E. Grasby, “On the causes of mass extinctions,” Paleogeogr., Paleoclimatol., Paleoecol. 487, 3–29 (2017).

    Article  Google Scholar 

  10. E. N. Bulgakova, “Physics–chemical conditions of formation of the Norilsk traps intrusions,” In Traps of the Siberian Platform and Their Metallogeny, (Irkutsk, 1971), pp. 36–37 [in Russian].

  11. S. D. Burgess and S. A. Bowring, “High–precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction,” Sci. Adv. 1, e1500470 (2015).

    Article  Google Scholar 

  12. I. H. Campbell and G. F. Davies, “Do mantle plumes exist?” Episodes 29 (3), 162–168 (2006).

    Article  Google Scholar 

  13. I. H. Campbell and R. W. Griffiths, “Implications of mantle plume structure for the evolution of flood basalts,” Earth Planet Sci. Lett. 99 (1–2), 79–93 (1990).

    Article  Google Scholar 

  14. I. H. Campbell, G. K. Czamanske, V. A. Fedorenko, R. I. Hill, and V. K. Stepanov, “Synchronism of the Siberian Traps and the Permian–Triassic boundary,” Science 258, 1760–1763 (1992).

    Article  Google Scholar 

  15. L. V. Danyushevsky and P. Plechov, “Petrolog3: Integrated software for modeling crystallization processes,” Geochem., Geophys., Geosyst. 12, Q07021 (2011).

    Article  Google Scholar 

  16. V. I. Davydov, “Tunguska coals, Siberian sills and the Permian-Triassic extinction,” Earth–Sci. Rev. 212, 103438 (2021).

    Article  Google Scholar 

  17. V. I. Davydov and E. V. Karasev, “The Influence of the Permian–Triassic magmatism in the Tunguska Basin, Siberia on the regional floristic biota of the Permian–Triassic transition in the region,” Front. Earth Sci. 9, 635179 (2021).https://doi.org/10.3389/feart.2021.635179

    Article  Google Scholar 

  18. V. I. Davydov, E. V. Karasev, and V. V. Zharinova, “Field evidence for coal combustion links the 252 Ma Siberian traps with global carbon disruption,” Comment: Geology 49, e517 (2021).

    Google Scholar 

  19. L. I. Demina, V. S. Zakharov, M. Yu. Promyslova, and S. P. Zaviyalov, “Relations of collision and trap magmatism in Taimyr on the basis of geological data and modeling,” Moscow Univ. Bull. 4 (1), 16–25 (2018).

    Google Scholar 

  20. V. V. Distler, S. F. Sluzhenikin, L. J. Cabri, N. A. Krivolutskaya, D. M. Turovtsev, T. A. Golovanova, A. V. Mokhov, V. V. Knauf, and O. I. Oleshkevich, “Platinum ores of the Noril’sk Layered intrusions: magmatic and fluid concentration of noble metals,” Geol. Ore Deposits 41 (3), 214–237 (1999).

    Google Scholar 

  21. N. L. Dobretsov, “Mantle superplumes as a reason of main geological periodicity and global reconstructions,” Dokl. Earth Sci. 357 (6), 797–800 (1997).

    Google Scholar 

  22. O. A. Dyuzhikov, V. V. Distler, B. M. Strunin, A. K. Mkrtychyan, M. L. Sherman, S. F. Sluzhenikin, and A. M. Lurye, Geology and Metallogeny of Sulfide Deposits, Noril’sk Region, USSR (Economic Geology Publishing Company, Littleton, 1992).

    Google Scholar 

  23. L. T. Elkins–Tanton, “Continental magmatism caused by lithospheric delamination,” In Plates, Plumes and Paradigms, Ed. by G. R. Foulger, J. H. Natland, D. C. Presnall, and D. L. Anderson (Geological Society of America, Boulder, 2005), pp. 449–461.

    Google Scholar 

  24. L. T. Elkins-Tanton, S. E. Grasby, B. A. Black, R. V. Veselovskiy, O. H. Ardakani, and F. Goodarzi, “Field evidence for coal combustion links the 252 Ma Siberian traps with global carbon disruption,” Geology 48, 986–991 (2020).

    Article  Google Scholar 

  25. L. T. Elkins-Tanton, S. E. Grasby, B. A. Black, R. V. Veselovskiy, O. H. Ardakani, and F. Goodarzi, “Field evidence for coal combustion links the 252 Ma Siberian traps with global carbon disruption: Reply,” Geology 49 (3), e518–e518 (2021).

    Article  Google Scholar 

  26. R. Ernst, Large Igneous Provinces (Cambridge University Press, 2014).

    Book  Google Scholar 

  27. V. Fedorenko and G. Czamanske, “Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha–Kotuy area, Siberian flood-basalt province, Russia,” Int. Geol. Rev. 39, 479–531 (1997).

    Article  Google Scholar 

  28. V. A. Fedorenko, P. C. Lightfoot, and A. J. Naldrett, “Petrogenesis of the Siberian flood-basalts sequence at Noril’sk, north–central Siberia,” Int. Geol. Rev. 38, 99–135 (1996).

    Article  Google Scholar 

  29. A. M. Fetisova, R. V. Veselovskiy, A. V. Latyshev, V. A. Rad’ko, and V. E. Pavlov, “Magnetic Stratigraphy of the Permian–Triassic traps in the Kotuy River Valley (Siberian Platform). New paleomagnetic data,” Stratigraphy. Geol. Correlation 22, 377–390 (2014).

    Article  Google Scholar 

  30. T. P. Fischer, “Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes,” Geochem. J. 42, 21–38 (2008).

    Article  Google Scholar 

  31. C. E. Ford, D. G. Russel, J. A. Graven, et al., “Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal. Liquid cation partition coefficients for Mg, Fe2+, Ca and Mn,” J. Petrol. 24, 256–265 (1983).

    Article  Google Scholar 

  32. Geological Dictionary (VSEGEI, St. Petersburg, 2009) [in Russian].

  33. Geological Map of the Deposits of the Krasnoyarsk District, Tyva Republics, and Khakasia on a Scale 1 : 1 500 000 Ed. by M. B. Kalvitsky (Krasnoyarsk, 2005) [in Russian].

  34. M. N. Godlevsky, Traps and Ore-bearing Intrusions in the Norilsk area (Gosgeoltekhizdat, Moscow, 1959) [in Russian].

    Google Scholar 

  35. L. N. Grinenko, “Sources of sulfur of the nickeliferous and barren gabbrodolerite intrusions of the northwest Siberian platform,” Int. Geol. Rev. 27, 695–708 (1985).

    Article  Google Scholar 

  36. D. R. Haughton, P. L. Roeder, and J. B. Skinner, “Solubility of sulfur in mafic magmas,” Econ. Geol. 69 (4), 451–467 (1974).

    Article  Google Scholar 

  37. A. V. Ivanov, “Evaluation of different models for the origin of the Siberian traps,” In: Plate, Plumes, and Planetary Processes, Spec. Pap. - Geol. Soc. Am. 430, 669–691 (2007).

    Google Scholar 

  38. S. L. Kamo, G. K. Czamanske, and Y. Amelin, “Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma,” Earth Planet. Sci. Lett. 214, 75–91 (2003).

    Article  Google Scholar 

  39. V. K. Karandashev, V. A. Khvostikov, S. V. Nosenko, and Z. Burmii, “Stable highly enriched isotopes in routine analyses of rocks, soils, grounds, and sediments by ICP–MS,” Inorg. Mater. 53, 1432–1441 (2017).

    Article  Google Scholar 

  40. A. K. Kargal’tsev, M. V. Volovetskii, A. A. Kadik, and O. A. Lukanin, “A high-temperature furnace with a controlled oxygen regime for studying phase and redox reactions in silicate and oxide systems at 1 atm,” Geochem. Int. 47 (7), 725–730 (2009).

    Article  Google Scholar 

  41. A. M. Koleszar, A. E. Saal, and E. H. Hauri, “The volatiles contents of the Galapagos plume: evidence for H2O and F open system behavior in melt inclusions,” Earth Planet. Sci. Lett. 287, 442–452 (2009).

    Article  Google Scholar 

  42. N. A. Krivolutskaya, “The problem of subdivision of volcanic rocks of the trappean formation of the Norilsk region,” Dokl. Earth Sci. 439 (2), 1088–1092 (2011).

    Article  Google Scholar 

  43. N. A. Krivolutskaya, Siberian Traps and Pt–Cu–Ni Deposits in the Noril’sk Area (Springer, Heidelberg, 2016).

    Book  Google Scholar 

  44. N. A. Krivolutskaya and A. V. Sobolev, “Magmatic inclusions in olivines from intrusions of the Noril’sk region, Northwestern Siberian platform: evidence for primary melts,” Dokl. Earth Sci. 381 (3), 1047–1052 (2001).

    Google Scholar 

  45. N. A. Krivolutskaya and T. B. Kedrovskaya, “Structure and composition of the nadayansky lava flow: an example of the homogeneity of lava flows of the Siberian Traps Province,” Geochem. Int. 58 (4), 363–376 (2020).

    Article  Google Scholar 

  46. N. A. Krivolutskaya, A. V. Sobolev, S. F. Sluzhenikin, and N. M. Svirskaya, “Melt inclusions in olivines of the Talnakh type intrusions,” In Proceedings of the X International Conference on the Thermobarogeochemistry (VNIISIMS, Aleksandrov, 2001), pp. 141–157 [in Russian].

  47. N. A. Krivolutskaya, A. V. Sobolev, S. G. Snisar, B. I. Gongalskiy, B. Hauff, D. V. Kuzmin, I. N. Tushentsova, N. M. Svirskaya, N. N. Kononkova, and T. B. Schlychkova, “Mineralogy, geochemistry and stratigraphy of the Maslovsky Pt–Cu–Ni sulfide deposit, Noril’sk Region, Russia: Implications for relationship of ore–bearing intrusions and lavas,” Mineral. Deposit 47, 69–88 (2012a).

    Article  Google Scholar 

  48. N. A. Krivolutskaya, A. V. Sobolev, V. N. Mikhailov, A. A. Plechova, Yu. A. Kostitsyn, I. A. Roschina, and Z. Fekiacova, “Parental melt of the Nadezhdinsky Formation: geochemistry, petrology and connection with Cu–Ni deposits (Noril’sk area, Russia),” Chem. Geol. 302–303, 87–105 (2012b).

    Article  Google Scholar 

  49. N. A. Krivolutskaya, A. Latyshev, A. Dolgal, B. Gongalsky, E. Makareva, A. Makarev, N. Svirskaya, Ya. Bychkova, A. Yakushev, and A. Asavin, “Unique PGE–Cu–Ni Noril’sk deposits, Siberian Trap Province: magmatic and tectonic factors in their origin,” Minerals 9 (1), 66 (2019a).

    Article  Google Scholar 

  50. N. Krivolutskaya, B. Gongalsky, T. Kedrovskaya, I. Kubrakova, O. Tyutyunnik, V. Chikatueva, Y. Bychkova, E. Kovalchuk, A. Yakushev, and N. Kononkova, “Geology of the western flanks of the Oktyabr’skoe Deposit, Noril’sk District, Russia: evidence of a closed magmatic system,” Mineral. Deposit. 54, 611–630 (2019b).

    Article  Google Scholar 

  51. N. Krivolutskaya, B. Belyatsky, B. Gongalsky, A. Dolgal, A. Lapkovsky, and T. Bayanova, “Petrographical and geochemical characteristics of magmatic rocks in the Northwestern Siberian Traps Province, Kulyumber River Valley. Part II: Rocks of the Kulyumber Sites,” Minerals 10, 409 (2020).

    Article  Google Scholar 

  52. A. V. Latyshev, R. V. Veselovskiy, A. V. Ivanov, A. M. Fetisova, and V. E. Pavlov, “Short intense bursts in magmatic activity in the south of Siberian Platform (Angara Taseeva Depression): the paleomagnetic evidence,” Izv. Phys. Solid Earth 49, 823–835 (2013).

    Article  Google Scholar 

  53. A. V. Latyshev, V. A. Rad’ko, R. V. Veselovskiy, A. M. Fetisova, and V. E. Pavlov, “Correlation of the Permian–Triassic ore-bearing intrusions of the Norilsk Region with the volcanic sequence of the Siberian Traps based on paleomagnetic data,” Econ. Geol. 115 (6), 1173–1193 (2020a).

    Article  Google Scholar 

  54. A. V. Latyshev, A. M. Fetisova, and R. V. Veselovskiy, “Linking Siberian Traps LIP emplacement and end Permian mass extinction: evidence from magnetic stratigraphy of the Maymecha–Kotuy volcanic section,” Geosciences 10, 295 (2020b).

    Article  Google Scholar 

  55. P. S. Lightfoot, A. J. Naldrett, and N. S. Gorbachev, “Geochemistry of the Siberian trap of the Noril’sk area, USSR, with amplication for the relative contributions of crust and mantle to flood basalt magmatism,” Contrib Mineral Petrol. 104, 631–644 (1990).

    Article  Google Scholar 

  56. P. C. Lightfoot, C. J. Hawkesworth, J. Hergt, A. J. Naldrett, N. S. Gorbachev, and V. A. Fedorenko, “Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb–isotopic evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia,” Contrib Mineral Petrol. 114, 171–188 (1993).

    Article  Google Scholar 

  57. A. P. Likhachev, “The role of leucocratic gabbro in the origin of Noril’sk differentiated intrusions,” Izv. Akad. Nauk SSSR Ser. Geol. 12, 50–66 (in Russian) (1965).

  58. A. P. Likhachev, Platinum–Copper–Nickel and Platinum Deposits (Eslan, Moscow, 2006) [in Russian].

    Google Scholar 

  59. A. P. Likhachev, “Possibility of mantle magma self-enrichment in ore matter and heavy isotope 34S to form platinum-copper-nickel deposits. Perspectives of ore localization in the Norilsk region,” Otechestvennaya Geol., No. 3, 32–49 (2019). (In Russian)

  60. K. N. Malitch, E. A. Belousova, W. L. Griffin, and I. Yu. Badanina, “Hafnium-neodymium constraints on sources heterogeneity of the economic ultramafic-mafic Noril’sk-1 intrusion (Russia),” Lithos 164–167, 36–46 (2013).

    Article  Google Scholar 

  61. B. Marty and I. N. Tolstikhin, “CO2 fluxes from mid–ocean ridges, arcs and plumes,” Chem. Geol. 145, 233–248 (1998).

    Article  Google Scholar 

  62. V. L. Masaitis, “Permian and Triassic volcanism of Siberia: problems of dynamic reconstructions,” Zap Vsesoyuz. Mineral. O-va 112, 412–425 (1983).

    Google Scholar 

  63. A. J. Naldrett, Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration (Springer, Heidelberg, 2004).

    Book  Google Scholar 

  64. V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Mean contents of volatile components, major and trace elements in magmatic melts in major geodynamic environments on Earth. I. Mafic melts,” Geochem. Int. 55, 629–653 (2017).

    Article  Google Scholar 

  65. G. V. Nesterenko and A. I. Al’mukhamedov, Geochemistry of Differentiated Traps (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  66. A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals,” Geochem. Int. 40 (3), 219–232 (2002).

    Google Scholar 

  67. O. V. Petrov, Isotope Geology of the Norilsk Deposits (Springer, Berlin/Heidelberg, 2019).

    Book  Google Scholar 

  68. B. G. Pokrovsky, S. F. Sluzhenikin, and N. A. Krivolutskaya, “Interaction conditions of Noril’sk trap intrusions with their host rocks: isotopic (O,H, and C) evidence,” Petrology 13 (1), 49–72 (2005).

    Google Scholar 

  69. Proceedings of the Sudbury–Noril’sk Symposium, Ed. by P. C. Lightfoot and A. J.Naldrett (Ontario Geological Survey, 1994).

  70. K. Putirka, “Excess temperatures at ocean islands: Implications for mantle layering and convection,” Geology 36 (4), 283–286 (2008).

    Article  Google Scholar 

  71. V. A. Radko, Facies of Intrusive and Effusive Magmatism in the Norilsk Region (VSEGEI: St. Petersburg, 2016). [in Russian].

    Google Scholar 

  72. A. P. Rasnitsyn, “When life did not even think of dying,” Russian Nature 12, 39–48 (2012).

    Google Scholar 

  73. A. P. Rasnitsyn, D. S. Aristov, and D. A. Rasnitsyn, “Dynamics of insect diversity during the Early and Middle Permian,” Paleontol. J. 49 (12), 1282–1309 (2015).

    Article  Google Scholar 

  74. P. M. Rees, “Land-plant diversity and the end–Permian mass extinction. Geology 30 (9), 827–830 (2002).

    Article  Google Scholar 

  75. M. K. Reichow, M. S. Pringle, A. I. Al’Mukhamedov et al., “The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end-Permian environmental crisis,” Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Article  Google Scholar 

  76. P. R. Renne and A. R. Basu, “Rapid eruption of the Siberian Traps flood basalts at the Permo–Triassic boundary,” Science 253, 176–179 (1991).

    Article  Google Scholar 

  77. A. V. Rudakova and N. A. Krivolutskaya, “Structural and textural specific features of rocks of trap rock association in the Noril’sk trough (NW of Siberian Platform),” Moscow Univ. Geol. Bull. 64, 364–370 (2009)

    Article  Google Scholar 

  78. I. D. Ryabchikov, I. P. Solovova, T. Ntaflos, A. Büchl, and P. I. Tikhonenkov, “Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). II. Melt intrusion chemistry, composition of “primary” magmas and P–T regime at the base of superplume,” Geochem. Int. 39, 484–497 (2001a).

    Google Scholar 

  79. I. D. Ryabchikov, T. Ntaflos, A. Büchl, and I. P. Solovova, “Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). I. Mineral compositions and geochemistry of major and trace elements,” Geochem. Int. 39, 467–483 (2001b).

    Google Scholar 

  80. I. D. Ryabchikov, L. N. Kogarko, and I. P. Solovova, “Physico-chemical conditions of magma formation at the base of the Siberian Plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui Province,” Petrology 17 (3), 287–299 (2009).

    Article  Google Scholar 

  81. A. E. Saal, E. H. Hauri, C. H. Langmuir, and M. R. Perfit, “Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle,” Nature 419 (6906), 451–455 (2002).

    Article  Google Scholar 

  82. S. Sahney and M. J. Benton, “Recovery from the most profound mass extinction of all time,” Proc. Biol. Sci. 275 (1636), 759–765 (2008).

    Google Scholar 

  83. A. Saunders and M. Reichow, “The Siberian Traps and the end-Permian mass extinction: a critical review,” Chin. Sci. Bull. 54 (1), 20–37 (2009).

    Article  Google Scholar 

  84. M. Sharma, “Siberian traps,” In Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Ed. by J. J. Mahoney and M. F. Coffin, Geophys. Monograph Ser. 100, 273–295 (1997).

  85. R. V. Shtokalo, N. A. Krivolutskaya, A. A. Konyshev, I. T. Rass, and S. I. Demidova, “Composition, structure and formation conditions of the Arydzhangsky Formation of the Maimecha–Kotuy District of the Siberian Trap Province,” IOP Conference Series Earth and Environmental Science 962 (1), 012059 (2021).

  86. S. Sibik, M. Edmonds, J. Maclennan, and H. Svensen, “Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor,” J. Petrol. 56 (11), 2089–2116 (2015).

    Article  Google Scholar 

  87. S. Sibik, M. Edmonds, B. Villemant, H. H. Svensen, A. G. Polozov, and S. Planke, “Halogen enrichment of Siberian Traps magmas during interaction with evaporites,” Front. Earth Sci. 9, 741447 (2021). https://doi.org/10.3389/feart.2021.741447

    Article  Google Scholar 

  88. A. V. Sobolev, “Melt inclusions in minerals as a source of principal petrologic information,” Petrology 4, 209-220 (1996).

    Google Scholar 

  89. A. V. Sobolev and A. B. Slutsky, “Composition and crystallization conditions of the parental melt of the Siberian meymechites in connection with the general problem of ultrabasic magmas,” Geol. Geophys. 12, 97–110 (1984).

    Google Scholar 

  90. A. V. Sobolev, S. V. Sobolev, D. V. Kuzmin, K. N. Petrunin, and A.G. Malitch, “Siberian meimechites: Origin and relation to flood basalts and kimberlites,” Rus. Geol. Geophys. 50, 999–1033 (2009a).

    Article  Google Scholar 

  91. A. V. Sobolev, N. A. Krivolutskaya, and D. V. Kuzmin, “Petrology of primary melts and mantle sources of the Siberian traps province,” Petrology 17, 276–310 (2009b).

    Article  Google Scholar 

  92. S. V. Sobolev, A. V. Sobolev, D. V. Kuzmin, N. A. Krivolutskaya, A. G. Petrunin, N. T. Arndt, V. A. Rad’ko, and Yu. R. Vasil’ev, “Linking mantle plumes, large igneous provinces and environmental catastrophes,” Nature 477, 312–316 (2011).

    Article  Google Scholar 

  93. A. V. Sobolev, N. Arndt, N. A. Krivolutskaya, D. V. Kuzmin, and S. V. Sobolev, “The origin of gases that caused the Permian–Triassic extinction,” In Volcanism and Global Environmental Change, Ed. by A. Schmidt, K. E. Fristad, and L. T. Elkins-Tanton (Cambridge University Press, Cambridge, 2015), pp. 147–163.

    Google Scholar 

  94. H. Song, S. Huang, E. Jia, X. Dai, P. B. Wignall, and A. M. Dunhill, “Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction,” Proc. Natl. Acad. Sci. U. S. A. 117, 17578–17583 (2020).

    Article  Google Scholar 

  95. V. S. Staroseltsev, Tectonics of Lava Plateaus (Nedra, Moscow, 1989) [in Russian].

    Google Scholar 

  96. H. H. Svensen, S. Frolov, G. G. Akhmanov, A. G. Polozov, D. A. Jerram, O. V. Shiganova, N. V. Melnikov, K. Iyer, and S. Planke, “Sills and gas generation in the Siberian Traps,” Philos. Trans. R. Soc., A. (2018) https://doi.org/10.1098/rsta.2017.0080

  97. T. V. Svetlitskaya and P. A. Nevolko, “Late Permian-Early Triassic traps of the Kuznetsk Basin, Russia: geochemistry and petrogenesis in respect to the extension of the Siberian Large Igneous Province,” Gondwana Res. 39, 57–76 (2016).

    Article  Google Scholar 

  98. Y. I. Tesakov, The Silurian Basin of Eastern Siberia: Basin Paleogeography (on a Chronosonal and Biogeocenotic Basis) (INGG, Novosibirsk, 2014) [in Russian].

    Google Scholar 

  99. D. M. Turovtsev, Contact Metamorphism of the Norilsk Intrusions (Nauchny mir, Moscow, 2002) [in Russian].

  100. N. N. Urvantsev, “North Siberian Ni-bearing province,” Rus. Geol. Geophys. 3, 3–11 (1974).

    Google Scholar 

  101. Yu. R. Vasil’ev, M. P. Gora, and D. V. Kuz’min, “Petrology of foidiitic and meymechitic volcanism in the Maimecha–Kotui province,” Russ. Geol. Geophys. 58 (6), 817–833 (2017).

    Article  Google Scholar 

  102. L. Vinnik and V. Farra, “Low S velocity atop the 410-km discontinuity and mantle plumes,” Earth Planet. Sci. Lett. 262 (3), 398–412 (2007).

    Article  Google Scholar 

  103. L. P. Vinnik, S. I. Oreshin, and L. I. Makeyeva, “Siberian traps: hypotheses and seismology data,” Izv., Phys. Solid Earth 53 (3), 332–340 (2017).

    Article  Google Scholar 

  104. J. L. Wooden, G. K. Czamanske, V. A. Fedorenko, N. T. Arndt, C. Chauvel, R. M. Bouse, B. S. King, R. J. Knight, and D. F. Siems, “Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Norilsk area, Siberia,” Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Article  Google Scholar 

  105. Z. Yao and J. Mungall, “Linking the Siberian flood basalts and giant PGE-Cu–Ni sulfide deposits at Norilsk,” J. Geophys. Res.: Solid Earth 126, JBO20823 (2020).

    Google Scholar 

  106. V. V. Zolotukhin, V. V. Ryabov, Y. R. Vasil’ev, and B. A. Shatkov, Petrology of the Talnakh Differentiated Ore–Bearing Trap Intrusion (Nauka, Novosibirsk, 1975) [In Russian].

    Google Scholar 

  107. V. V. Zolotukhin, O. A. Dyuzhikov, and A. M. Vilensky, Basalts of the Siberian Platform (Nauka, Novosibirsk, 1986). [in Russian].

    Google Scholar 

  108. V. V. Zolotukhin, Y. R. Vasil’ev, and O. A. Dyuzhikov, Diversity of Traps and Initial Magmas: a Case of the Siberian Platform (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Alexander Sobolev for the opportunity to conduct EPMA analyses at the Max Planck Institute of Chemistry in Mainz. We thank Sergey Simakin, Eugeny Potapov for SIMS analyses of melt inclusions and Natalia Kononkova for EPMA analyses of minerals. We express gratitude to Eugeny Karasev for the useful comments.

Funding

The research was carried out with the financial support of the Russian Science Foundation (project no. 22-27-00387, analytical work), State Assignment “Processes controlling the formation and evolution of the Earth’s lithosphere” 0137-2019-0012 (field trip), and no. 121041500233-0 (petrographical study of the Maslovsky gabbro-dolerite intrusion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Krivolutskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivolutskaya, N.A., Konyshev, A.A., Kuzmin, D.V. et al. Is the Permian–Triassic Mass Extinction Related to the Siberian Traps?. Geochem. Int. 60, 1323–1351 (2022). https://doi.org/10.1134/S0016702922130067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922130067

Keywords:

Navigation