Skip to main content
Log in

Natural Distillation of Solutions and Opal Formation in Closed Vapor–Liquid Hydrothermal Systems

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The experiments were performed with water (0.5 g) saturated with silica relative to quartz (10.3 mmol/kg) in sealed platinum ampoules at 300°C. After quenching, the solutions were analyzed by ICP‑AES and photometry, while the ampoule walls and solid phases were analyzed by scanning electron microscopy, X-ray energy-dispersion analysis, atomic force microscopy, and profilometry. In the new ampoules with smooth inner walls, the molality of silica in liquid solution (m) did not change over time, which is consistent with the stability of quartz under these conditions. In the same ampoules, but with rough inner walls, the m value decreased over time to 0.06 mmol/kg, and metastable opal-A was deposited on the ampoule walls above the liquid water level. The decrease in m over time obeyed an exponential law that described the gradual replacement of the solution with vapor condensate. This unusual behavior of silica was explained by natural distillation supported by the predominant evaporation of a thin water film on the rough walls. The evaporation (distillation) rate was 0.1–0.8 g/day and depended on the roughness parameters and the direction of small temperature gradient on the autoclave surface. Distillation modeling based on the equations of lifting the solution film along the rough wall, transfer and deposition of silica, allowed us to calculate the supersaturation in the fluid film, the deposition/dissolution rates of the opal, and its effective thickness and particle size depending on the time and height above the solution level. The results of modeling and experiments were consistent with each other and led to the conclusion that the permanent mass transfer of silica between water, vapor and opal maintained a non-equilibrium steady state of the system. Distillation of solutions can occur also in natural cavities containing various minerals when water–vapor interface and rough hydrophilic walls are presented. As a result, cavities can migrate downwards and recrystallize large volumes of rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th ed. (John Wiley & Sons, New York, 1997).

    Google Scholar 

  2. V. A. Alekseyev, “Nanoparticles and nanofluids in water–rock interactions,” Geochem. Int. 57 (4), 357–368 (2019).

    Article  Google Scholar 

  3. V. A. Alekseyev and L. S. Medvedeva, “Disturbance of thermodynamic equilibrium of the quartz-water system and silica separation from the liquid phase at a small temperature gradient,” Proc. Earth Planetary Sci. 7, 6–9 (2013).

    Article  Google Scholar 

  4. V. A. Alekseyev and L. S. Medvedeva, “Silica distribution in the system quartz–water–vapor depending on the temperature gradient,” Geochem. Int. 56 (2), 136–147 (2018).

    Article  Google Scholar 

  5. V. A. Alekseyev, L. S. Medvedeva, L. N. Kochnova, and O. A. Tytyunnik, “Mechanisms of silica precipitation from hydrothermal solutions: The effects of solution evaporations and quartz seed crystals,” Geochem. Int. 48 (2) 178–182 (2010).

    Article  Google Scholar 

  6. V. A. Alexeyev, L. S. Medvedeva, and N. P. Starshinova, “Paradoxical transformation of the equilibrium quartz–water system into an unequilibrated one,” Geochem. Int. 51 (5), 382–404 (2013).

    Article  Google Scholar 

  7. V. A. Alekseyev, L. S. Medvedeva, V. N. Balashov, A. A. Burmistrov, and I. N. Gromiak, “Experimental investigation of nonequilibrium transfer of silica from liquid water into vapor phase,” Geochem. Int. 56 (7), 617–627 (2018).

    Article  Google Scholar 

  8. V. Alekseyev, V. Balashov, L. Medvedeva, and A. Opolchentsev, “Spontaneous distillation of silica-bearing solution in closed system with rough walls,” E3S Web of Conf. 98, 04001 (2019).

  9. V. A. Alekseyev, A. A. Burmistrov, and I. N. Gromiak, “Quartz transformation into opal at the water–vapor interface,” Geochem. Int. 59 (4), 377–387 (2021).

    Article  Google Scholar 

  10. C. Anbeek, “Surface roughness of minerals and implications for dissolution studies,” Geochim. Cosmochim. Acta 56, 1461–1470 (1992).

    Article  Google Scholar 

  11. K. R. Applin, “The diffusion of dissolved silica in dilute aqueous solution,” Geochim. Cosmochim. Acta 51, 2147–2151 (1987).

    Article  Google Scholar 

  12. A. M. Ashabov, Crystal Genesis and Evolution of “Crystal–Environment” System (Nauka, Saint–Petersburg, 1993) [in Russian].

  13. P. Bettermann and F. Liebau, “The transformation of amorphous silica to crystalline silica under hydrothermal conditions,” Contrib. Mineral. Petrol. 53, 25–36 (1975).

    Article  Google Scholar 

  14. J. Bico, C. Tordeux, and D. Quéré, “Rough wetting,” Europhys. Lett. 55, 214–220 (2001).

    Article  Google Scholar 

  15. J. Bico, U. Thiele, and D. Quéré, “Wetting of textured surfaces,” Colloids and Surfaces A 206, 41–46 (2002).

    Article  Google Scholar 

  16. C. Buffone and K. Sefiane, “Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores,” Int. J. Multiphase Flow 30 (9), 1071–1091 (2004).

    Article  Google Scholar 

  17. R. M. Carr and W. S. Fyfe, “Some observations on the crystallization of amorphous silica,” Am. Mineral. 43, 908–916 (1958).

    Google Scholar 

  18. J. S. Cline, R. J. Bodnar, and J. D. Rimstidt, “Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits, J. Geophys. Res. 97, 9085–9103 (1992).

    Article  Google Scholar 

  19. J. D. Dana, E. S. Dana, and C. Frondel, The System of Mineralogy. Volume. 3. Silica Minerals (John Wiley and Sons, New York, 1962).

  20. P. J. Darragh, A. J. Gaskin, B. C. Terrell, and J. V. Sanders, “Origin of precious opal,” Nature 209 (5018), 13–16 (1966).

    Article  Google Scholar 

  21. W. P. Dong, P. J. Sullivan, and K. J. Stout, “Comprehensive study of parameters for characterising three-dimensional surface topography. III: Parameters for characterizing amplitude and some functional properties,” Wear 178, 29–43 (1994).

    Article  Google Scholar 

  22. P. M. Dove, “Kinetic and thermodynamic controls on silica reactivity in weathering environments,” Rev. Mineral. 31, 235–290 (1995).

    Google Scholar 

  23. L. R. Drees, L. P. Wilding, N. E. Smeck, and A. L. Senkayi, “Silica in soils: Quartz and disordered silica polymorphs,” In Minerals in Soil Environments, Ed. by J. B. Dixon and S. B. Weed (Soil Sci. Soc. Am., Madison, 1989), pp. 913–974.

    Google Scholar 

  24. S. E. Drummond and H. Ohmoto, “Chemical evolution and mineral deposition in boiling hydrothermal systems,” Econ. Geol. 80, 126–147 (1985).

    Article  Google Scholar 

  25. S. Emmanuel, J. J. Ague, and O. Walderhaug, “Interfacial energy effects and the evolution of pore size distributions during quartz precipitation in sandstone,” Geochim. Cosmochim. Acta 74 (12), 3539–3552 (2010).

    Article  Google Scholar 

  26. S. R. Friedman, M. Khalil, and P. Taborek, “Wetting transition in water,” Phys. Rev. Lett. 111 (22), 226101 (2013).

    Article  Google Scholar 

  27. A. Galarneau, M. Nader, F. Guenneau, Renzo F. Di, and A. Gedeon, “Understanding the stability in water of mesoporous SBA-15 and MCM-41,” J. Phys. Chem. C 111 (23), 8268–8277 (2007).

    Article  Google Scholar 

  28. R. M. Gel’man and I. Z. Starobina, Photometric Methods of Determination of Rock-Forming Elements in Ores, Rocks, and Minerals (Min. Geologii RSFSR, Leningrad, 1970) [in Russian].

  29. H. Graetsch, “Structural characteristics of opaline and microcrystalline silica minerals,” Rev. Mineral. 29, 209–232 (1994).

    Google Scholar 

  30. K. M. Hay and M. I. Dragila, “Physics of fluid spreading on rough surfaces,” Int. J. Numerical Analysis 5, 85–92 (2008).

    Google Scholar 

  31. R. W. Henley and G. O. Hughs, “Underground fumaroles: “excess heat” effects in vein formation,” Econ. Geol. 95, 453–466 (2000).

    Google Scholar 

  32. N. R. Herdianita, P. R. L. Browne, K. A. Rodgers, and K. A. Campbell, “Mineralogical and textural changes accompanying ageing of silica sinter,” Mineral. Deposita 35, 48–62 (2000).

    Article  Google Scholar 

  33. K. Hoshino, T. Itami, R. Shiokawa, and M. Watanabe, “A possible role of boiling in ore deposition: A numerical approach,” Resour. Geol. 56, 49–54 (2006).

    Article  Google Scholar 

  34. J. P. Ildefonse and V. Gabis, “Experimental study of silica diffusion during metasomatic reactions in presence of water at 550 degrees C and 1000 bars,” Geochim. Cosmochim. Acta 40, 297–303 (1976).

    Article  Google Scholar 

  35. R. K. Iler, “Formation of precious opal,” Nature 207 (4996), 472–473 (1965).

    Article  Google Scholar 

  36. C. M. Isaacs, “Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California,” Geology 10, 304–308 (1982).

    Article  Google Scholar 

  37. C. M. Isaacs, K. A. Pisciotto, and R. E. Garrison, “Facies and diagenesis of the Miocene Monterey Formation, California: A summary,” In Siliceous Deposits in the Pacific Region, Ed. by A. Iijima, J. R. Hein, and R. Siever (Elsevier, Amsterdam, 1983), pp. 247–282.

    Google Scholar 

  38. C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, and D. Quéré, “Wicking within forests of micropillars,” Earth Planet. Sci. Lett. 79, 56005 (2007).

    Google Scholar 

  39. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  40. J. B. Jones and E. R. Segnit, “The occurrence and formation of opal at Coober Pedy and Andamooka,” Austral. J. Sci. 29, 129–133 (1966).

    Google Scholar 

  41. D. V. Kalinin, V. V. Serdobintseva, and V. F. Shabanov, “Layer-by layer step growth mechanism of photonic-crystal opal films grown by the moving-meniscus method,” Dokl. Phys. 53 (5), 249–252 (2008).

    Article  Google Scholar 

  42. J. Kim, M. -W. Moon, and Kim H. -Y. and, “Dynamics of hemiwicking,” J. Fluid Mech. 800, 57–71 (2016).

    Article  Google Scholar 

  43. P. B. Kowalczuk, C. Akkaya, M. Ergun, M. J. Janicki, O. Sanbaz, and J. Drzymala, “Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica,” Physicochem. Probl. Miner. Process. 53 (1), 192–201 (2017).

    Google Scholar 

  44. V. Kumar and J. R. Errington, “Impact of small-scale geometric roughness on wetting behavior,” Langmuir 29 (38), 11815–11820 (2013).

    Article  Google Scholar 

  45. Yu. M. Lukashov, V. F. Fursenko, and A. S. Popov, “Procedure of experimental investigation of silicic acid distribution between boiling water and equilibrium vapor in a wide range of pressures and concentrations,” In Problems of Heating and Ventilation, Ed. by E. A. Shtokman (Min. Vyssh. Sred. Obrazov. RSFSR, Rostov-on-Don, 1971), pp. 113–123 [in Russian].

    Google Scholar 

  46. B. Y. Lynne, K. A. Campbell, J. N. Moore, and P. R. L. Browne, “Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A,” Sediment. Geol. 179, 249–278 (2005).

    Article  Google Scholar 

  47. A. Mazurek, S. J. Pogorzelski, and K. Boniewicz-Szmyt, “Adsorption of natural surfactants present in sea waters at surfaces of minerals: Contact angle measurements,” Oceanologia 51 (3), 377–403 (2009).

    Article  Google Scholar 

  48. T. P. Mernagh, C. Leys, and R. W. Henley, “Fluid inclusions systematics in porphyry copper deposits: the super–giant Grasberg deposit, Indonesia, as a case study,” Ore Geol. Rev. 123, 103570 (2020).

    Article  Google Scholar 

  49. A. Okamoto, H. Saishu, N. Hirano, and N. Tsuchiya, “Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: Implications for quartz vein formation,” Geochim. Cosmochim. Acta 74 (13), 3692–3706 (2010).

    Article  Google Scholar 

  50. X. Peng and B. Jones, “Rapid precipitation of silica (opal-A) disguises evidence of biogenicity in high-temperature geothermal deposits: Case study from Dagunguo hot spring, China,” Sediment. Geol. 257–260, 45–62 (2012).

    Article  Google Scholar 

  51. J. L. Plawsky, M. Ojha, A. Chatterjee, and P. C. Wayner, Jr., “Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line,” Chem. Eng. Commun. 196, 658–696 (2008).

    Article  Google Scholar 

  52. A. V. Plyasunov, “Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor-liquid distribution constants, fugacity and cross virial coefficients,” Geochim. Cosmochim. Acta 77, 215–231 (2012).

    Article  Google Scholar 

  53. R. A. Pollock, G. Yu. Gor, B. R. Walsh, J. Fry, I. T. Ghampson, Yu. B. Melnichenko, H. Kaiser, W. J. DeSisto, M. C. Wheeler, and B. G. Frederick, “Role of liquid vs vapor water in the hydrothermal degradation of SBA-15,” J. Phys. Chem. C 116 (43), 22802–22814 (2012).

    Article  Google Scholar 

  54. A. Ponomarenko, D. Quéré, and C. Clanet, “A universal law for capillary rise in corners,” J. Fluid Mech. 666, 146–154 (2011).

    Article  Google Scholar 

  55. A. Putnis, “Transient porosity resulting from fluid–mineral interaction and its consequences,” Rev. Mineral. Geochem. 80, 1–23 (2015).

    Article  Google Scholar 

  56. D. Quéré, “Rough ideas on wetting,” Physica A 313, 32–46 (2002).

    Article  Google Scholar 

  57. D. Quéré, “Wetting and roughness,” Annu. Rev. Mater. Res. 38, 71–99 (2008).

    Article  Google Scholar 

  58. L. Rebreanu, J. -P. Vanderborght, and L. Chou, “The diffusion coefficient of dissolved silica revisited. Marine Chem. 112, 230–233 (2008).

    Article  Google Scholar 

  59. J. D. Rimstidt and H. L. Barnes, “The kinetics of silica-water reactions,” Geochim. Cosmochim. Acta 44, 1683–1699 (1980).

    Article  Google Scholar 

  60. K. Sefiane and C. A. Ward, “Recent advances on thermocapillary flows and interfacial conditions during the evaporation of liquids,” Adv. Colloid Interface Sci. 134–135, 201–223 (2007).

    Article  Google Scholar 

  61. J. V. Sengers and J. T. R. Watson, “Improved international formulations for the viscosity and thermal conductivity of water substance,” J. Phys. Chem. Ref. Data 15, 1291–1314 (1986).

    Article  Google Scholar 

  62. A. L. Senkayi, J. B. Dixon, L. R. Hossner, B. P. K. Yerima, and L. P. Wilding, “Replacement of quartz by opaline silica during weathering of petrified wood,” Clays Clay Mineral. 33 (6), 525–531 (1985).

    Article  Google Scholar 

  63. B. Shi, S. Sinha, and V. K. Dhir, “Molecular simulation of the contact angle of water droplet on a platinum surface,” American Society of Mechanical Engineers, Heat Transfer Division, HTD 376, 93–97 (2005).

    Google Scholar 

  64. E. Spruijt, Guludec E. Le, C. Lix, M. Wagner, and D. Quéré, “Liquid filmification from menisci,” Europhys. Lett. 112 (1), 16002 (2015).

    Article  Google Scholar 

  65. C. I. Steefel and A. C. Lasaga, “A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems,” Am. J. Sci. 294 (5), 529–592 (1994).

    Article  Google Scholar 

  66. C. I. Steefel and P. Van Cappellen, “A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening,” Geochim. Cosmochim. Acta 54 (10), 2657–2677 (1990).

    Article  Google Scholar 

  67. K. T. Tan, C. C. White, D. L. Hunston, C. Cleresi, K. L. Steffens, J. Goldman, and B. D. Vogt, “Fundamentals of adhesion failure for a model adhesive (P-MMA/Glass) joint in humid environment,” J. Adhesion 84, 339–367 (2008).

    Article  Google Scholar 

  68. D. J. Tobler and L. G. Benning, “In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions,” Geochim. Cosmochim. Acta 114, 156–168 (2013).

    Article  Google Scholar 

  69. D. B. van den Heuvel, E. Gunnlaugsson, I. Gunnarsson, T. M. Stawski, C. L. Peacock, and L. G. Benning, “Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines,” Geothermics 76, 231–241 (2018).

    Article  Google Scholar 

  70. Y. Wang, “Nanogeochemistry: Nanostructures, emergent properties and their control on geochemical reactions and mass transfers,” Chem. Geol. 378–379, 1–23 (2014).

    Article  Google Scholar 

  71. M. Wangen and I. A. Munz, “Formation of quartz veins by local dissolution and transport of silica,” Chem. Geol. 209 (3–4), 179–192 (2004).

    Article  Google Scholar 

  72. L. A. Williams and D. A. Crerar, “Silica diagenesis, II. General mechanisms,” J. Sediment. Petrol. 55 (3), 312–321 (1985).

    Google Scholar 

  73. L. A. Williams, G. A. Parks, and D. A. Crerar, “Silica diagenesis, I. Solubility controls,” J. Sediment. Petrol. 55 (3), 301–311 (1985).

    Google Scholar 

  74. R. Xiao, R. Enright, and E. N. Wang, “Prediction and optimization of liquid propagation in micropillar arrays,” Langmuir 26 (19), 15070–15075 (2010).

    Article  Google Scholar 

  75. G. P. Zaraisky, “The influence of acidic fluoride and chloride solutions on the geochemical behaviour of Al, Si and W,” In: Fluids in the Crust. Equilibrium and Transport Properties, Ed. by K. I. Shmulovich, B. W. D. Yardley, and G. G. Gonchar (Chapman & Hall, London, 1995), pp. 139–162.

    Google Scholar 

  76. G. P. Zaraisky, “The conditions of the nonequilibrium silicification of rocks and quartz vein formation during acidic metasomatism,” Geol. Ore Deposits 41 (4), 262–275 (1999).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank I.N. Gromyak for the analysis of experimental solutions with low silica content by ICP-AES and A.A. Burmistrov for the study of solid phases in a scanning electron microscope. The authors thank Associate Editor Lawrence Anovitz and three anonymous reviewers for their critical comments and useful suggestions. V. Balashov acknowledges support from the Penn State Earth and Environmental Systems Institute (Director S.L. Brantley). The experimental part of the work was carried out within the framework of the state task 0137-2019-0016 of the Vernadsky Institute of Geochemistry and Analytical Chemistry and was financially supported by the Russian Foundation for Basic Research, project no. 06-05-64110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alekseyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, V.A., Balashov, V.N., Medvedeva, L.S. et al. Natural Distillation of Solutions and Opal Formation in Closed Vapor–Liquid Hydrothermal Systems. Geochem. Int. 60, 1393–1414 (2022). https://doi.org/10.1134/S0016702922130031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922130031

Keywords:

Navigation