Skip to main content
Log in

Assessment of Isotopic Characterization (δ18O, δ2H and 3H) and Hydrochemical Processes of the Springs in Kumalar Mountain Region (Afyonkarahisar, Turkey)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In this study, the recharge processes of the springs in the Sandikli and Suhut basins were investigated by stable isotopes, oxygen-18 (δ18O), deuterium (δ2H or δD) and tritium (3H) analysis. The study area consists of volcanics, limestones and clastic rocks. There is a large number of water sources discharged from volcanic origin rocks and clastic limestones in this region. The dominant ions in the springs in the region are Ca2+, Mg2+ and HC\({\text{O}}_{3}^{ - }\). The δ18O and δ2H values of the spring waters ranged between –8.0 and –10.8, –53.0 and –69.6 in September-2017, between –7.9 and –10.8, –512.0 and –69.6 in April-2018 respectively. The positions of samples on the δ18O–δ2H diagrams indicate the meteoric origin. The maximum tritium contents of the water samples 5.4 TU in September-2017 and 5.2 TU in April-2018. Deuterium excess (d-excess) values of spring waters were between 9.1 and 17.3‰ in September-2017, between 8.4 and 18.0‰ in April-2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Afsin and H. Bas, “Hydrochemical evaluation of the Kocpinar springs (Aksaray),” Geol. Bull. Turkey 39 (1), 75–86 (1996).

    Google Scholar 

  2. M. Afsin, N. Erdogan, H. Gurdal, A. Gurel, A. Onak, O. Oruc, M. Kavurmaci, and G. Durukan, Hydrogeochemical and Isotopic Investigation of Hot and Mineral Waters and Travertines in Central Anatolia and Medical and Bioclimatic Evaluation of Waters, (TUBITAK-CAYDAG, Aksaray, 2007).

    Google Scholar 

  3. P. K. Aggarwal, A. R. Basu, R. J. Poreda, K. M. Kulkarni, K. Froehlich, S. A. Tarafdar, and S. R. Ahmed, A Report on Isotope Hydrology of Groundwater in Bangladesh, Implications for Characterization and Mitigation of Arsenic in Groundwater (International Atomic Energy Agency-TC Project BGD/8/016, 2000).

  4. N. Aghazadeh and A. A. Mogaddam, “Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran,” Environ. Monit. Assess 176, 183–195 (2011).

    Article  Google Scholar 

  5. F. Aksever, “Hydrogeochemical characterization and water quality assessment of springs in the Emirdag (Afyonkarahisar) basin, Turkey”, Arabian J. Geosci. 12 (24), 1–21 (2019).

    Article  Google Scholar 

  6. F. Aksever, A. Davraz, and S. Varol, Sustainable Use of Karstic Water Resources in Sandikli and Suhut (Afyonkarahisar) Basins and Water Management, Project No. 116Y389 (TUBITAK-CAYDAG, 2019)

  7. F. Aksever, A. Davraz, and S. Varol, “Assessment of regional discharge and spring type using hydrograph and Maillet analyses in Kumalar Mountain region, Afyonkarahisar,” Turkey. Arabian J. Geosci. 14 (22), 1–15 (2021).

    Article  Google Scholar 

  8. L. Araguas-Araguas, K. Froehlich, and K. Rozanski, “Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture,” Hydrol. Process 14, 1341–1355.

  9. N. M. Asmael, F. Huneau, E. Garel, H. Celle-Jeanton, P. Le Coustumer, A. Dupuy, and S. Hamid, “Origin and recharge mechanisms of groundwater in the upper part of the Awaj River (Syria) based on hydrochemistry and environmental isotope techniques,” Arabian J. Geosci. 8 (12), 10521–10542 (2015).

    Article  Google Scholar 

  10. Standard Methods for the Examination of Water and Wastewater, 22nd edition, Ed. by E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri, (American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), Washington, D.C., 2012).

  11. V. Balcı, 1 : 100 000 Scaled Geological Maps Afyon-L25 Map, Report No. 161 (MTA General Directorate, Department of Geological Studies Ankara, 2011a)

  12. V. Balcı, 1 : 100 000 Scaled Geological Maps Afyon-L24 Map. MTA Report No162, (General Directorate, Department of Geological Studies, Ankara, 2011b)

  13. J. L. Banner, G. J. Wasserburg, P. F. Dobson, A. B. Carpenter, and C. H. Mooren, “Isotopic and trace-element constraints on the origin and evolution of saline groundwaters from central Missouri”, Geochim Cosmochim Acta 53, 383-398 (1989).

    Article  Google Scholar 

  14. J. Bershaw, “Controls on deuterium excess across Asia”, Geosciences 8 (7), 257 (2018).

    Article  Google Scholar 

  15. E. Busenberg and L. N. Plummer, “Concentrations of chlorofluorocarbons and other gases in groundwater at Mirror Lake, New Hampshire,” In, USGS Toxic Substances Hydrology Program Technical Meeting, Ed. by D. W. Morganwalp and D. A. Aronson, (Colorado Springs, 1993).

  16. H. Caldirak, and B. Kurtulus, “Evidence of possible recharge zones for Lake Salda (Turkey),” J. Indian Soc. Remote Sensing 46 (9), 1353–1364 (2018).

    Article  Google Scholar 

  17. T. E. Cerling, B. L. Pederson, K. L. V. Damm, “Sodium calcium ion exchange in weathering of shale: implication for global weathering,” Budget 17, 552–554 (1989).

    Google Scholar 

  18. I. D. Clark and P. Fritz, Environmental Isotopes in Hydrogeology (Lewis Publishers, New York, 1997).

    Google Scholar 

  19. H. Craig, “Isotopic variations in meteoric waters”, Science 133 (3465), 1702–1703 (1961).

    Article  Google Scholar 

  20. W. Dansgaard, “Stable isotopes in precipitation,” Tellus 16, 436–468 (1964).

    Article  Google Scholar 

  21. C. Dilsiz, “Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data,” Hydrogeol. J. 14, 562–572 (2006).

    Article  Google Scholar 

  22. S. A. Durov, “Natural waters and graphic representation of their composition,” Dokl Akad Nauk SSSR 59 (3), 7–90 (1948).

    Google Scholar 

  23. K. Erguvanli, and E. Yuzer, Geology of Groundwater, Publication No. 23 (ITU Faculty of Mines, 1987).

  24. R. S. Fisher and F. W. Mullican, “Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans- Pecos, Texas, USA,” Hydrogeol. J. 10 (4), 455–474 (1997).

    Google Scholar 

  25. M. G. Garcia, M. Hidalgo, and M. A. Blesa, “Geochemistry of groundwater in the alluvial plain of Tucum’an province, Argentina,” Hydrogeol. J. 9, 597–610 (2001).

    Article  Google Scholar 

  26. F. G. Guner and I. N. Guner, “Determination of hydrogeology of Sakarbasi Karstic resources (Cifteler-Eskisehir) by using hydrochemistry and environmental isotope methods,” Symposium on Using Isotope Techniques in Hydrology (Adana-Turkey, 2002), pp. 199–213.

  27. S. K. Gupta and R. D. Deshpande, “Groundwater isotopic investigations in India, What has been learned?”, Curr. Sci. 89 (5), 825–835 (2005).

    Google Scholar 

  28. D. F. Hamamin and S. S. Ali, “Hydrodynamic study of karstic and intergranular aquifers using isotope geochemistry in Basara basin, Sulaimani, North-Eastern Iraq,” Arabian J. Geosci. 6 (8), 2933–2940 (2013).

    Article  Google Scholar 

  29. M. Hayashi, “Temperature-electrıcal conductıvıty relatıon of water for envıronmental monıtorıng and geophysıcal data inversıon,” Environ. Monitor. Assess. 96, 119–128 (2004)

    Article  Google Scholar 

  30. J. Jankowski and R. I. Acworth, “Impact of debris-flow deposits on hydrogeochemical process and the development of dry land salinity in the Yass River catchment, New South Wales, Australia,” Hydrogeol. J. 5 (4), 71–88 (1997).

    Article  Google Scholar 

  31. G. Jeelani, U. S. Kumar, and B. Kumar, “Variation of δ18O and δD in precipitation and stream waters across the Kashmir Himalaya (India) to distinguish and estimate the seasonal sources of stream flow,” J. Hydrol. 481, 157–165 (2013).

    Article  Google Scholar 

  32. B. G. Katz, T. B. Coplen, T. D. Bullen, and J. H. Davis, “Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled karst”, Groundwater 35, 1014–1028 (1998).

    Article  Google Scholar 

  33. M. Kumar, K. Kumari, U. K. Singh, A. L. Ramanathan, “Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab, conventional graphical and multivariate statistical approach”, Environmental Geo 57, 873–884 (2009).

    Article  Google Scholar 

  34. M. Kumar, A. L. Ramanathan, M. S. Rao, and B. Kumar, “Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India”, J. Environ. Geol. 50, 1025–1039 (2006).

    Article  Google Scholar 

  35. F. Li, G. Pan, C. Tang, Q. Zhang, and J. Yu, “Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China plain”, Environ Geol. 55, 1109–1122 (2008).

    Article  Google Scholar 

  36. F. Liao, G. Wang, Z. Shi, G. Cheng, Q. Kong, W. Mu, and L. Guo, “Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China, approaches using stable isotopes (δD and δ18O) and radon”, Hydrogeol. J. 26 (5), 1625—1638 (2018).

    Article  Google Scholar 

  37. F. J. Mackenzie and R. H. Garrells, “Silicates, reactivity with water”, Sci. J., No. 1505, 57–58 (1965).

  38. W. Mclean and J. Jankowski, “Groundwater quality and sustainability in an alluvial aquifer, Australia,” XXX IAH Congress on Groundwater, Past Achievements and Future Challenges, Cape Town South Africa, Ed. by Sililo et al. (Balkema, Rotterdam, 2000).

  39. A. L. Maya and M. D. Loucks, “Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah”, J. Hydrol. 172, 31–59 (1995).

    Article  Google Scholar 

  40. M. Mayback, “Global chemical weathering of surficial rocks estimated from river dissolved loads”, Am. J. Sci. 287, 401–428 (1987).

    Article  Google Scholar 

  41. L. Merlivat and J. Jouzel, “Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation,” J. Geophys. Res. Oceans 84 (C8), 5029–5033 (1979).

    Article  Google Scholar 

  42. F. J. Millero, The Physical Chemistry of Natural Waters (Wiley-Interscience, New York, 2001).

    Google Scholar 

  43. A. A. Murad and F. M. Subyanand Mirghni, “Isotopic variations of oxygen and hydrogen in groundwater of carbonate aquifer in an arid environment,” Arabian J. Geosci. 5 (6), 1459–1468 (2012).

    Article  Google Scholar 

  44. H. Ngabirano, D. Byamugisha, and E. Ntambi, “Effects of seasonal variations in physical parameters on quality of gravity flow water in Kyanamira Sub-County, Kabale District, Uganda,” J. Water Res. Protection 8, 1297–1309 (2016).

    Article  Google Scholar 

  45. H. Ocal and F. Goktas, 1 : 100 000 Scale Geological Maps Afyon-K24 Map, Report No. 158 (MTA General Directorate, Geological Studies Department, Ankara, 2011).

  46. H. Ocal, N. Turhan, and F. Goktas, 1 : 100 000 Scale Geological Maps Afyon-K25 Map, Report No. 159 (MTA General Directorate, Geological Studies Department, Ankara, 2011).

  47. S. Parimalarenganayaki, L. Elango, and M. Schneider, “Variations in stable isotopes of oxygen and hydrogen in surface and groundwater of a managed aquifer recharge site: A case study,” J. Geol. Soc. India 93 (5), 533–538 (2019).

    Article  Google Scholar 

  48. H. Peng, B. Mayer, S. Harris, and H. R. Krouse, “The influence of below cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada”, Tellus 59, 698–704 (2007).

    Article  Google Scholar 

  49. N. Rajmohan, and L. Elango, “Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India”, Environ Geol. 46, 47–61 (2004).

    Google Scholar 

  50. R. K. Ranjan, A. L. Ramanathan, P. Parthasarthy, and A. Kumar, “Hydrochemical characteristics of groundwater in the plains of Phalgu River in Gaya, Bihar, India,” Arabian J. Geosci. 6, 3257–3267 (2013)

    Article  Google Scholar 

  51. R. J. Rogers, “Geochemical comparison of groundwater in areas of New England, New York, and Pennsylvania,” Groundwater 27 (5), 690–712 (1989).

    Article  Google Scholar 

  52. A. Sahinci, Geochemistry of Natural Waters (İzmir, 1991).

    Google Scholar 

  53. J. C. V. Sastri, Groundwater Chemical Quality in River Basins, Hydrogeochemical Facies and Hydrogeochemical Modeling. Lecture Notes-Refresher Course Conducted by School of Earth Sciences (Bharathidasan University, Thiruchirapalli, Tamil Nadu, 1994).

    Google Scholar 

  54. H. Schoeller, “Qualitative evaluation of groundwater resources,” Methods and Techniques of Groundwater Investigations and Development (UNESCO, Paris, 1965), pp. 4–83.

    Google Scholar 

  55. H. Schoeller, “Geochemistry of groundwater,” An International Guide for Research and Practice (UNESCO, Paris, 1967), pp. 1–18.

    Google Scholar 

  56. P. Shand, W. M. Edmunds, A. R. Lawrence, et al., The Natural (baseline) Quality of Groundwater in England and Wales, Report No. RR/07/06 (British Geological Survey Research, 2007). https://core.ac.uk/download/ pdf/62722.pdf

  57. J. A. Sorensen and G. E. Glass, “Ion and temperature dependence of electrical conductance for natural waters”, Analyt. Chem. 59, 1594–1597 (1987).

    Article  Google Scholar 

  58. A. M. Subyani, “Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, western Saudi Arabia,” Environ. Geol. 46 (6–7), 741–749 (2004).

    Article  Google Scholar 

  59. A. Taheri Tizro and K. S. Vouduris, “Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran”, Hydrological Processes 22, 3066–3078 (2008).

    Article  Google Scholar 

  60. R. G. Tamma, R. Y. Srinivasa, J. Mahesh, L. Surinaidu, D, Ratnakar, R. V. V. S. Gurunadha, and P. M. Durga, “Hydrochemical assessment of groundwater in alluvial aquifer region, Jalandhar District, Punjab, India”, Environ. Earth Sci. 73 (12), 8145–8153 (2015).

    Article  Google Scholar 

  61. URL-1:https//tr.climate-data.org/asya/tuerkiye/afyonkarahisar/afyonkarahisar-181/#climate-graph, Accessed June 13, 2022.

  62. H. F. Yeh, H. I. Lin, C. H. Lee, K. C. Hsu, and C. S. Wu, “Identifying seasonal groundwater recharge using environmental stable isotopes”, Water 6, 2849–2861 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by 3001—Starting R&D Projects Funding Program from National Support Programs of the Scientific and Technological Research Council of Turkey (Project no. 116Y389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Aksever.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksever, F., Davraz, A. & Varol, S. Assessment of Isotopic Characterization (δ18O, δ2H and 3H) and Hydrochemical Processes of the Springs in Kumalar Mountain Region (Afyonkarahisar, Turkey). Geochem. Int. 60, 1472–1486 (2022). https://doi.org/10.1134/S001670292213002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292213002X

Keywords:

Navigation