Skip to main content
Log in

Sodium-Rich Phosphate and Silicate Inclusions in the Troilite Nodule of the Darinskoe Iron Meteorite (IIC)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Sodium-rich phosphate and silicate melt inclusions as well as chromite and schreibersite grains have been studied in the troilite nodule of the Darinskoe IIC iron meteorite. Sulfide association (K-sulfides, pentlandite, chalcopyrite, cubanite ?) commonly occurs around the inclusions. Many phosphate inclusions are altered and represented now by unidentified hydrated Сa–Fe–Mn–Mg-phosphates, which are the replacement products of unhydrated high-Na orthophosphates. Buchwaldite NaCa(PO4) was only found as primary phase of the inclusions; and monetite CaH(PO4) was determined among secondary phosphates. Silicate inclusions contain glass, sometimes Fe-rich serpentine (?), and phosphate. Silicate glasses have highly siliceous and high-Na alkaline composition (SiO2—60.8–74.4 wt %, Na2O + K2O—13.9–16.8 wt %), and are enriched in TiO2 (2.2–11.2 wt %) and Cr2O3 (1.5–3.4 wt %) and virtually free in Al2O3 (<0.2 wt %). It is suggested that the inclusions represent the latest crystallization products of the Darinskoe meteorite formed due to silicate–natrophosphate liquid immiscibility in a sulfide melt. The chemical compositions of the key meteorite minerals, as well as data on rare and potentially new minerals (Cl-free djerfisherite, “Cu-djerfisherite” K7(Cu,Fe)25S26, NiTe, Ni3Fe2, Os–Ir–Pt-rich Fe–Ni alloys, czochralskiite) are also given in the paper. Raman spectra for buchwaldite and monetite are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. V. Azarova, D. I. Krinov, and M. N. Sokolova, “Structural and genetic affinity of djerfisherite and bartonite and problem of isomorphism in the djerfisherite–Cu- djerfisherite–bartonite system,” New Mineral Data 41, 98–107 (2006).

    Google Scholar 

  2. M. Ben Amara, M. Vlasse, Flem G. Le, and P. Hagenmuller, “Structure of the low-temperature variety of calcium sodium orthophosphate, NaCaPO4,” Acta Crystallogr. C39, 1483–1485 (1983).

    Article  Google Scholar 

  3. S. N. Britvin, S. V. Krivovichev, E. V. Obolonskaya, N. S. Vlasenko, V. N. Bocharov, and V. V. Bryukhanova, “Xenophyllite, Na4Fe7(PO4)6, an exotic meteoritic phosphate: new mineral description, Na-ions mobility and electrochemical implications,” Minerals 10 (4), articl-e 300 (2020).

    Article  Google Scholar 

  4. V. F. Buchwald and C. B. Koch, “Hibbingite (Beta-Fe2(OH)3Cl), a chlorine-rich corrosion product in meteorites and ancient iron objects,” Meteoritics 30, 493–493 (1995).

    Google Scholar 

  5. S. M. Chernonozhkin, S. Goderis, S. Bauters, B. Vekemans, L. Vincze, P. Claeys, and F. Vanhaecke, “Evaluation of pneumatic nebulization and ns-laser ablation ICP-MS for bulk elemental analysis and 2-dimensional element mapping of iron meteorites,” J. Anal. At. Spectrom. 29, 1001–1016 (2014).

    Article  Google Scholar 

  6. S. M. Chernonozhkin, S. Goderis, L. Lobo, P. Claeys, and F. Vanhaecke, “Development of an isolation procedure and MC-ICP-MS measurement protocol for the study of stable isotope ratio variations of nickel,” J. Anal. At. Spectrom. 30, 1518–1530 (2015).

    Article  Google Scholar 

  7. S. M. Chernonozhkin, S. Goderis, M. Costas-Rodríguez, P. Claeys, and F. Vanhaecke, “Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites,” Geochim. Cosmochim. Acta 186, 168–188 (2016).

    Article  Google Scholar 

  8. N. V. Chukanov and M. F. Vigasina, Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds (Springer Mineralogy, 2020). https://doi.org/10 (2020).1007/978-3-030-26803–9_4

  9. G. K. Czamanske, R. C. Erd, B. F. Leonard, and J. R. Clark, “Bartonite, a new potassium iron sulfide mineral,” Am. Mineral. 66, 369–375 (1981).

    Google Scholar 

  10. M. G. Dobrovolskaya, A. I. Tsepin, T. L. Evstigneeva, L. N. Vyalsov, and A. O. Zaozerina, “Murunskite, K2Cu3-FeS4, a new potassium, copper, and iron sulfide,” Zap. Vsesoyuz. Mineral. O-va 110, 468–473 (1981).

    Google Scholar 

  11. Goresy A. El, N. Grögler, and J. Ottemann, “Djerfisherite composition in Bishopville, Peña Blanca Springs, St. Marks and Toluca meteorites,” Chem. Erde 30, 77–82 (1971).

    Google Scholar 

  12. H. T. Evans and J. R. Clark, “The crystal structure of bartonite, a potassium iron sulfide and its relationship to pentlandite and djerfisherite,” Am. Mineral. 66, 376–384 (1981).

    Google Scholar 

  13. R. L. Frost, Y. Xi, G. Millar, K. Tan, and S. J. Palmer, “Vibrational spectroscopy of natural cave mineral monetite CaHPO4 and the synthetic analog,” Spectroscop. Lett. 46 (1), 54–59 (2013).

    Article  Google Scholar 

  14. L. H. Fuchs, “Djerfisherite, alkali copper-iron sulfide, a new mineral from the Kota-Kota and St. Mark’s enstatite chondrites,” Science 153, 166–167 (1966).

    Article  Google Scholar 

  15. B. K. Grandhe, V. R. Bandi, K. Jang, H. S. Lee, D. S. Shin, S. S. Yi, and J. H. Jeong, “Effect of sintering atmosphere and lithium ion co-doping on photoluminescence properties of NaCaPO4: Eu2+ phosphor,” Ceram. Inter. 38 (8), 6273–6279 (2012).

    Article  Google Scholar 

  16. Ł. Karwowski, K. Helios, R. Kryza, A. Muszyński, and P. Drożdżewski, “Raman spectra of selected mineral phases of the Morasko iron meteorite,” J. Raman Spectroscop. 44, 1181–1186 (2013).

    Article  Google Scholar 

  17. Ł. Karwowski, J. Kusz, A. Muszyński, R. Kryza, M. Sitarz, and E. V. Galuskin, “Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland),” Mineral. Mag. 79 (2), 387–398 (2015).

    Article  Google Scholar 

  18. Ł. Karwowski, R. Kryza, A. Muszyński, J. Kusz, K. Helios, P. Drożdżewski, and E. V. Galuskin, “Czochralskiite, Na4Ca3Mg(PO4)4, a second new mineral from the Morasko IAB-MG iron meteorite (Poland),” Eur. J. Mineral. 28(6), 969–977 (2016).

    Article  Google Scholar 

  19. A. Kracher, G. Kurat, and V. F. Buchwald, “Cape York: The extraordinary mineralogy of an ordinary meteorite and its implication for the genesis of IIIAB irons,” Geochem. J. 11, 207–217 (1977).

    Article  Google Scholar 

  20. A. Kracher, S. D. Gramstad, and G. Kurat, “Soroti and the origin of sulfide-rich meteorites,” Meteorit. Planet. Sci. 33 (S4), A88–A89 (1998).

    Google Scholar 

  21. F. P. Lesnov and S. M. Chernonozhkin, “First data on rare-earth concentrations in the Darinskoe iron meteorite, Kazakhstan: LA ICP-MS data,” Mineralogical Prospects-2011 (Inst. Geol., Komi STs UrB RAS, Syktyvkar, 2011a), pp. 92–94 [in Russian].

  22. F. P. Lesnov and S. M. Chernonozhkin, “Geochemistry of PGE and rhenium in the Darinskoe iron meteorite, Kazakhstan (first data),” Metallogeny of Ancient and Modern Oceans-2011. Models of Ore Formation and Assessment of Deposits (IMin UrB RAS, Miass, 2011b), pp. 280–284 [in Russian].

  23. K. D. Litasov and N. M. Podgornykh, “Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite,” J. Raman Spectrosc. 48, 1518–1527 (2017).

    Article  Google Scholar 

  24. K. D. Litasov, D. S. Ponomarev, I. S. Bazhan, A. Ishikawa, N. M. Podgornykh, and N. P. Pokhilenko, “Altaite (PbTe) in the Maslyanino iron meteorite with silicate inclusions, Dokl. Earth Sci. 478 (1), 79–81 (2018).

    Article  Google Scholar 

  25. C. Ma, “Colomeraite, IMA 2021-061. CNMNC Newsletter 63,” Eur. J. Mineral. 33, https://doi.org/10 (2021).5194/ejm-33-639–2021

  26. S. M. Morrison and R. M. Hazen, “An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma),” Am. Mineral. 106 (5), 730–761 (2021).

    Article  Google Scholar 

  27. E. Olsen, J. Erlichman, T. E. Bunch, and P. B. Moore, “Buchwaldite, a new meteoritic phosphate mineral,” Am. Mineral. 62, 362–364 (1977).

    Google Scholar 

  28. E. J. Olsen, A. Kracher, A. M. Davis, I. M. Steele, I. D. Hutcheon, and T. E. Bunch, “The phosphates of IIIAB iron meteorites,” Meteorit. Planet. Sci. 34, 285–300 (1999).

    Article  Google Scholar 

  29. I. V. Pekov, N. Perchiazzi, S. Merlino, V. N. Kalachev, M. Merlini, and A. E. Zadov, “Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino,” Eur. J. Mineral. 19 (6), 891–898 (2007).

    Article  Google Scholar 

  30. I. V. Pekov, N. V. Zubkova, D. V. Lisitsyn, and D. Yu. Pushcharovskii, “Crystal chemistry of murunskite,” Dokl. Earth Sci. 424, 139–141 (2009).

    Article  Google Scholar 

  31. E. Pernicka and J. T. Wasson, “Ru, Re, Os, Pt and Au in iron meteorites,” Geochim. Cosmochim. Acta. 51 (6), 1717–1726 (1987).

    Article  Google Scholar 

  32. L. N. Plyashkevich, S. M. Sandomirskaya, and N. I. Zaslavskaya, “Mineralogy and structure of the Egvekinot meteorite,” Meteoritika 39, 70–78 (1980).

    Google Scholar 

  33. A. E. Rubin and C. Ma, “Meteoritic minerals and their origins,” Chem. Erde. 77, 325–385 (2017).

    Article  Google Scholar 

  34. R. Schaudy, J. T. Watson, and V. F. Buchwald, “The chemical classification of iron meteorites. VI. A reinvestigation of irons with Ge concentration lower than 1 ppm,” Icarus 17 (1), 174–192 (1972).

    Article  Google Scholar 

  35. E. R. Scott and J. T. Wasson, “Classification and properties of iron meteorites,” Rev. Geophys. 13 (4), 527–546 (1975).

    Article  Google Scholar 

  36. V. V. Sharygin, “Sodium-rich phosphate and silicate inclusions in troilite nodule in Darinskoe iron meteorite (IIC),” Meteorit. Planet. Sci. 54 (SI–1), 6301 pdf (2019).

  37. V. V. Sharygin, “Mineralogy of silicate–natrophosphate immiscible inclusion in Elga IIE iron meteorite,” Minerals 10 (5), article 437 (2020).

    Article  Google Scholar 

  38. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, “β-Rhenanite (β-NaCaPO4) as weak interphase for hydroxyapatite ceramics,” J. Eur. Ceram. Soc. 18 (13), 1923–1929 (1998).

    Article  Google Scholar 

  39. H. Tornabene, C. D. Hilton, R. D. Ash, and R. J. Walker, “New insights to the genetics, age, and crystallization of group IIC iron meteorites,” In 50th Lunar and Planetary Science Conference (LPI Contrib.), No. 2132, 1236.pdf (2019).

  40. H. A. Tornabene, C. D. Hilton, K. R. Bermingham, R. D. Ash, and R. J. Walker, “Genetics, age and crystallization history of group IIC iron meteorites,” Geochim. Cosmochim. Acta 288, 36–50 (2020).

    Article  Google Scholar 

  41. X. Wang, H. Zhang, S. Wang, and Y. Wu, “Study on mineralogical and petrographic characteristics of carbonaceous chondrite in the Ningqiang area,” Acta Petrol. Mineral. 6 (4), 296–306 (1987) [in Chinese with English abstract].

    Google Scholar 

  42. J. T. Wasson, “The chemical classification of iron meteorites. III. Hexahedrites and other irons with germanium concentrations between 80 and 200 ppm,” Geochim. Cosmochim. Acta 33 (7), 859–876 (1969).

    Article  Google Scholar 

  43. F. Wlotzka, “The Meteoretical Bulletin, No. 78,” Meteoritics 30 (6), 792–796 (1995).

    Article  Google Scholar 

  44. J. Xu, I. S. Butler, and D. F. Gilson, “FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4∙2H2O) and anhydrous dicalcium phosphate (CaHPO4),” Spectrochim. Acta A. 55 (14), 2801–2809 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M.V. Khlestov, N.S. Karmanov, and N.V. Maksimova (IGM SB RAS, Novosibirsk) for help in the analytical studies on a scanning microscope and XRF-SR analyses of the Darinskoe meteorite.

We are grateful to I.V. Pekov (MSU) and anonymous reviewers for valuable comments and advices.

Funding

This work was partly supported by the government-financed task (project IX.125-2 of IGM SB RAS) and initiative project of the Ministry of Science and Higher Education (normative act 211 of the RF government, agreement no. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sharygin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharygin, V.V. Sodium-Rich Phosphate and Silicate Inclusions in the Troilite Nodule of the Darinskoe Iron Meteorite (IIC). Geochem. Int. 60, 1221–1236 (2022). https://doi.org/10.1134/S0016702922120059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922120059

Keywords:

Navigation