Skip to main content
Log in

Paleoproterozoic Mafic Dikes in the Junction Zone between the Fenno-Karelian Craton and the Svecofennian Orogen of the Fennoscandinan Shield (Composition, Age, Origin)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Gabbro-dolerite dikes were studied in the junction zone between two structures of different ages of the Fennoscandian shield: the Archean Fenno-Karelian craton and the Raakhe–Ladoga zone. Their composition was analyzed and U-Pb baddeleyite and zircon age was determined for the first time for the Russian territory. The Paleoproterozoic age has been established both for the gabbroic rocks of the Fenno-Karelian craton (previously considered Archean) and for the gabbro-dolerites of the Raakhe–Ladoga zone. The dike swarms within the Fenno-Karelian craton were formed in two stages: within 2091 ± 9–2086 ± 6 Ma near the Raakhe–Ladoga zone and in the central part of the studied area and within 1938 ± 6–1933 ± 26 Ma in the northern part. Sills of the Raakhe–Ladoga zone (2081 ± 7 Ma) were formed simultaneously with the earlier dikes of the Fenno-Karelian Craton (2091 ± 9–2086 ± 6 Ma). Primary magmas were derived from different sources. Most of the bodies of the Fenno-Karelian craton have high (La/Lu)N, negative niobium anomalies, predominantly negative εNd values, which suggests a contribution of a metasomatized lithospheric mantle. Some dikes of the Raakhe–Ladoga zone have the same source, but most rocks were obtained by mixing of depleted mantle and more primitive mantle source. The studied gabbrodolerite dikes were likely formed in a rifting tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. V. Beckman, C. Moller, U. Söderlund, and J. Andersson, “Zircon growth during progressive recrystallization of gabbro to garnet amphibolite, eastern segment, Sveconorwegian Orogen,” J. Petrology 58 (1), 167–188 (2017).

    Article  Google Scholar 

  2. L. P. Blask, S. L. Kamo, C. M. Alen, J. N. Aleinikoff, D. W. Davis, R. J. Korsch, and C. Foudoulis, “TEMORA 1: a new zircon standard for U-Pb geochronology,” Chem. Geol. 200 (1–2), 155–170 (2003).

    Article  Google Scholar 

  3. K. C. Condie, “Sources of Proterozoic mafic dyke swarms: constraints from Th/Ta and La/Yb ratios,” Precambrian Res. 81, 3–14 (1997).

    Article  Google Scholar 

  4. K. C. Condie, “High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?” Lithos 79, 491–504 (2005).

    Article  Google Scholar 

  5. J. G. Fitton, A. D. Saunders, L. M. Larsen, M. S. Fram, A. Demant, and C. Sinton, “Magma sources and plumbing systems during break-up of the SE Greenland margin: preliminary results from ODP Leg 152,” J. Geol. Soc. 152, 985–990 (1995).

    Article  Google Scholar 

  6. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  7. A. F. Grachev, “Identification of mantle plumes based on studying the composition of volcanic rocks and their isotopic–geochemical characteristics,” Petrology 11 (6), 562–596 (2003).

    Google Scholar 

  8. P. W. O. Hoskin and Urs. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral. Geochem. 53 (1), 27–62 (2003).

    Article  Google Scholar 

  9. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Article  Google Scholar 

  10. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd evolution of chondrites and achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  11. A. Kontinen, “An early Proterozoic ophiolite – the Jormua mafic–ultramafic complex, Northeastern Finland,” Precambrian Res. 35, 313–341 (1987).

    Article  Google Scholar 

  12. Yu. A. Kostitsyn, “Terrestrial and chondritic Sm–Nd and Lu–Hf isotopic systems: are they identical?” Petrology 12 (5), 397–411 (2004).

    Google Scholar 

  13. Proterozoic Ladoga Structure: Geology, Deep Structure, and Metallogeny (KarNTs, Petrozavodsk, RAN, 2020) [in Russian]. K. P. Ludwig, “SQUID 1. 00. A user’s manual,” Berkeley Geochronol. Center. Spec. Publ., No. 2, (2000).

  14. K. P. Ludwig, “Isoplot/Ex. A user’s manual,” Berkeley Geochronol. Center. Spec. Publ., No. 1 (2001).

  15. M. V. Malashin, A. I. Golubev, V. V. Ivanikov, and N. B. Filippov, “Geochemistry and petrology of the Lower Proterozoic mafic volcanic complexes of Karelia: I. Jatulian trap complex,” Vestn. SPBGU, Ser. 7, 1 (7), 3–32 (2003).

    Google Scholar 

  16. T. A. Myskova and P. A. Lvov, “Supracrustal rocks of uneven-aged Archean Greenstone structures of the Karelian Craton of the Fennoscandian Shield at the border with the Svecofennian Block: composition, age, and origin,” Stratigraphy. Geol. Correlation 30 (1), 1–29 (2022).

    Article  Google Scholar 

  17. H. E. O’Brien, H. Huhma, and P. Sorjonen-Ward, “Petrogenesis of the late Archean Hattu schist belt, Ilomantsi, eastern Finland: geochemistry and Sr, Nd isotopic composition,” Geol. Surv. Finland, Spec. Pap. 17, 147–184 (1993).

    Google Scholar 

  18. Early Precambrian of the Baltic Shield (Nauka, St. Petersburg, 2005).

  19. Resolution of the Third All-Russian Meeting “General problems of Precambrian stratigraphy,” Stratigraphy. Geol. Correlation 9 (3), 304–308 (2001).

  20. P. Richard, N. Shimizu, and C. J. Allegre, “143Nd/144Nd a natural tracer: An application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).

    Article  Google Scholar 

  21. N. V. Rodionov, B. V. Belyatsky, A. V. Antonov, I. N. Kapitonov, and S. A. Sergeev, “Comparative in-situ U–Th–Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline–ultramafic complex, Kola Peninsula, Russia,” Gondwana Res. 21, 728–744 (2012).

    Article  Google Scholar 

  22. D. Rubatto and M. Scambelluri, “U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltri Massif, Western Alps),” Contrib Mineral Petrol. 146, 341–355 (2003).

    Article  Google Scholar 

  23. J. G. Schilling, R. H. Kingsley, B. B. Hanan, and B. L. McCully, “Nd–Sr–Pb isotopic variations along the Gulf of Aden: Evidence for Afar mantle plume–continental lithosphere interaction,” J. Geophys. Res. 97, 10927–10966 (1992).

    Article  Google Scholar 

  24. M. A. Semikhatov, “New Precambrian stratigraphic scale: a comparison,” Stratigrafiya. Geol. Korrelyatsiya 1 (1), 6–20 (1993).

    Google Scholar 

  25. L. N. Sharpenok, A. E. Kostin, and E. A. Kukharenko, “TAS-diagram of total alkalis–silica for the chemical classification and identification of plutonic rocks,” Regional. Geol. Metallogen. 56, 40–50 (2013).

    Google Scholar 

  26. S. G. Skublov, A. O. Krasotkina, A. B. Makeev, O. L. Galankina, and A. E. Melnik, “Unique find of zircon transformation in baddeleyite: Ichet’yu occurrence, Middle Timan,” Izv. Vyssh. Ucheb. Zaved., Geol. Razved., no. 1, 27–35 (2018).

  27. U. Söderlund and L. Johansson, “A simple way to extract baddeleyite (ZrO2),” Geochem. Geophys. Geosyst. 3 (2), 1–7 (2002).

    Article  Google Scholar 

  28. State Geological Map of Russian Federation on a Scale 1 : 1 000 000 (Third Generation). Baltiiskaya Series. Sheets P–(35), 36 – Petrozavodsk. Explanatory Note (Kartograficheskaya fabrika VSEGEI, St. Petersburg, 2015) [in Russian].

  29. A. V. Stepanova, A. V. Samsonov, E. B. Salnikova, I. S. Puchtel, Yu. O. Larionova, A. N. Larionov, V. S. Stepanov, Y. B. Shapovalov, and S. V. Egorova, “Paleoproterozoic continental MORB-type tholeiites in the Karelian Craton: petrology, geochronology, and tectonic setting,” J. Petrol. 55, 1719–1751 (2014).

    Article  Google Scholar 

  30. A. V. Stepanova, E. B. Salnikova, A. V. Samsonov, S. V. Egorova, Yu. O. Larionova, and V. S. Stepanov, “The 2.31 Ga mafic dykes in the Karelian Craton, eastern Fennoscandian shield: U–Pb age, source characteristics andimplications for continental break-up processes,” Precambrian Res. 259, 43–57 (2015).

    Article  Google Scholar 

  31. A. V. Stepanova, E. B. Salnikova, A. V. Samsonov, Yu. O. Larionova, S. V. Egorova, and V. M. Savatenkov, “The 2405 Ma doleritic dykes in the Karelian Craton: a fragment of a Paleoproterozoic large igneous province,” Dokl. Earth Sci. 472 (1), 72–77 (2017).

    Article  Google Scholar 

  32. A. V. Stepanova, A. N. Larionov, and Yu. O. Larionova, “2.2-Ga sills in the central part of the Karelian Craton: U-Pb zircon geochronology and geochemistry of gabbro-dolerites of the Bol’shozero area,” Tr. KarNTs RAN. Ser. Geol. Dokembriya 11, 3–16 (2018).

    Google Scholar 

  33. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  34. L. P. Sviridenko, E. V. Isanina, and N. V. Sharov, “Deep structure, volcanoplutonism, and tectonics of the Ladoga region,” Tr. Karelsk. Nauchn. Ts. RAN, no. 2, 73–85 (2017).

  35. V. I. Vinogradov, “Implications of model Sm–Nd age for the Earth’s geological history interpretation,” Geotectonics 38 (1), 72–77 (2004).

    Google Scholar 

  36. J. Vuollo and H. Huhma, “Precambrian geology of Finland: key to the evolution of the Fennoscandian Shield,” Precambrian Geol. 14, 195–236 (2005).

    Article  Google Scholar 

  37. D. L. Whitney and B. W. Evans, “Abbreviations for names of rock-forming minerals,” Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  38. I. S. Williams, “U-Th-Pb geochronology by ion microprobe,” Application of Microanalytical Techniques to Understanding Mineralizing Processes, Ed. by M. A. McKibben, W. S. Shanks III, and W. I. Ridley, Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

Download references

Funding

This work was made in the framework of the government-financed project no. FMUW-2022-0004. U-Pb dating of accessory minerals was performed in the framework of the experimental-methodological works on the development of laboratory–analytical assistance of the state geological study of the Earth’s interior, state contract no. 049-00009-18-00 (Rosnedra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Myskova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myskova, T.A., Belyatsky, B.V., Sereda, E.E. et al. Paleoproterozoic Mafic Dikes in the Junction Zone between the Fenno-Karelian Craton and the Svecofennian Orogen of the Fennoscandinan Shield (Composition, Age, Origin). Geochem. Int. 60, 1037–1067 (2022). https://doi.org/10.1134/S0016702922110088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922110088

Keywords:

Navigation