Skip to main content
Log in

REE in the Calcite of Au–Cu Porphyry Mineralization at the Kutuevsky Occurrence, South Urals: LA–ICP–MS Data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents new data on the trace-element (REE, Y, and Sr) composition of calcite from stockwork Au–Cu porphyry ores and host rocks of the Kutuevsky occurrence, South Urals. Trace elements were analyzed by LA–ICP–MS in calcite and by ICP-MS in intrusive rocks and ophicalcite. We established that REE amounts and patterns of the calcite significantly varied and depend on the ore mineralization location in the metasomatic aureole. The ores in chlorite–sericite–quartz metasomatites in the central part of the gabbro-diorite and diorite intrusion are dominated by calcite, whose REE amounts and patterns are comparable to those of the intrusive rocks. We suggest that REE in the crystallized calcite were borrowed by fluid mainly from the intrusive rocks. Calcite in the ores hosted by biotite–epidote–chlorite–sericite–quartz metasomatites in the eastern inner-contact zone of the intrusive massif contains abnormally low REE amounts. The most likely REE source for this calcite is assumed to be the carbonate cement of the ophicalcites. REE fractionation was largely controlled by fluid temperature. When the calcite crystallized, the mineral-forming temperature exceeded 250°C, and therefore, Eu2+ dominated in the fluid, and the regime was reducing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Abedini, A. A. Calagari, and H. Naseri, “Mineralization and REE geochemistry of hydrothermal quartz and calcite of the Helmesi copper deposit, NW Iran,” N. Jb. Geol. Paläont. Abh. 281/2, 123–134 (2016).

    Google Scholar 

  2. M. Bau and P. Dulski, “Comparative study of yttrium and rare-earth behaviors in fluorine-rich hydrothermal fluids,” Contrib. Mineral. Petrol. 119, 213–223 (1995).

    Article  Google Scholar 

  3. M. Bau and P. Möller, “Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite,” Mineral. Petrol. 45, 231–246 (1992).

    Article  Google Scholar 

  4. F. Castorina and U. Masi, “REE and Nd-isotope evidence for the origin siderite from the Jebel Awam deposit (Central Morocco),” Ore Geol. Rev. 34, 337–342 (2008).

    Article  Google Scholar 

  5. D. R. Cooke, P. Hollings, J. J. Wilkinson, and R. M. Tosdal, “Geoshemistry of porphyry deposits,” Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian, 2nd Ed. (Springer, 2014), Vol. 13, pp. 357–381.

    Google Scholar 

  6. D. Debruyne, N. Hulsbosch, and P. Muchez, “Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system,” Ore Geol. Rev. 72, 232–252 (2016).

    Article  Google Scholar 

  7. A. I. Grabezhev, “Sr–Nd–C–O–H–S isotope-geochemical characteristics of copper porphyry fluid–magmatic systems of the South Urals: possible sources of matter,” Litosfera, No. 6, 66–89 (2009).

    Google Scholar 

  8. A. I. Grabezhev and Yu. L. Ronkin, “U-Pb age of zircons from ore-bearing granitoids of the copper porphyry deposits of the South Urals,” Litosfera 3, 104–116 (2011).

    Google Scholar 

  9. V. N. Kuleshov, Isotope Composition and Origin of Deep-Seated Carbonates, Moscow: Nauka, 1986 [in Russian].

    Google Scholar 

  10. A. Michard, “Rare earth element systematics in hydrothermal fluids,” Geochim. Cosmochim. Acta. 53, 745–750 (1989).

    Article  Google Scholar 

  11. A. A. Migdisov, A. E. Williams-Jones, and T. Wagner, “An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C,” Geochim. Cosmochim. Acta. 73, 7087–7109 (2009).

    Article  Google Scholar 

  12. P. Möller and G. Morteani, “On the geochemical fractionation of ram earth elements during the formation of Ca-minerals and its application to problems of the genesis of ore deposits,” The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies, Ed. by S. S. Augusthitis (Theophrastus, Athens, 1983), pp. 747–791.

    Google Scholar 

  13. P. Möller, I. Stober, and P. Dulski, “Seltenerdelement-, yttrium-gehalte und bleiisotope in thermal- und mineralwässern des schwarzwaldes,” Grundwasser 2, 118–132 (1997).

    Article  Google Scholar 

  14. P. Möller, P. Dulski, Y. Savascin, and M. Conrad, “Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: a hydrochemical study of their origin,” Chem. Geol. 206, 97–118 (2004)

    Article  Google Scholar 

  15. H. Ohmoto and M. B. Goldhaber, “Sulfur and carbon isotopes,” Geochemistry of Hydrothermal Ore Deposits (Wiley and Sons, 1997), pp. 517–611.

    Google Scholar 

  16. V. Yu. Prokofiev, N. S. Bortnikov, V. A. Kovalenker, S. F. Vinokurov, L. D. Zorina, A. D. Chernova, S. G. Kryazhev, N. N. Krasnov, and S. A. Gorbacheva, “The Darasun gold deposit, eastern Transbaikal region: chemical composition, REE patterns, and stable carbon and oxygen isotopes of carbonates from ore veins,” Geol. Ore Deposits 52 (2), 91–125 (2010).

    Google Scholar 

  17. J. P. Richards, T. Spell, E. Rameh, A. Razique, and T. Fletcher, “High Sr/Y magmas reflect arc matyrity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan,” Econ. Geol. 107, 295–332 (2012).

    Article  Google Scholar 

  18. H. R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Longman Scientific and Technical, London, 1993).

    Google Scholar 

  19. G. Schwinn and G. Markl, “REE systematics in hydrothermal fluorite,” Chem. Geol. 216, 225–248 (2005).

    Article  Google Scholar 

  20. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A. 32, 751–767 (1976).

    Article  Google Scholar 

  21. S. M. F. Sheppard, “Characterization and isotopic variations in natural waters,” Rev. Mineral. 16, 70–78 (1986).

    Google Scholar 

  22. R. H. Sillitoe, “Porphyry Copper Systems,” Econ. Geol. 105, 3–41 (2010).

    Article  Google Scholar 

  23. D. A. Sverjensky, “Europium redox equilibria in aqueous solution,” Earth Planet Sci. Lett. 67, 70–78 (1984).

    Article  Google Scholar 

  24. B. Taylor, “Magmatic volatiles: Isotopic variation of C, H, and S,” In Stable Isotopes in High Temperature Geological Processes, Mineral. Soc. Am., Rev. Mineral., Ed. by J. W. Valley et al., 6, 185–225 (1986).

  25. S. L. Votyakov, D. V. Kiseleva, E. S. Shagalov, N. V. Cherednichenko, L. K. Deryugina, S. A. Denisov, A. P. Chempalov, S. E. Uzkikh, and A. A. Orekhov, “Multielement analysis of geological samples by inductively coupled mass spectrometry on an ELAN 9000,” Yearbook-2005, Tr. Inst. Geol. Geokhim. im. akad. A.N. Zavaritskogo 153, 425–430 (2006).

    Google Scholar 

  26. Y.-F. Zheng, “Oxygen isotope fractionation in carbonate and sulfate minerals,” Geochem. J. 33, 109–126 (1999).

    Article  Google Scholar 

  27. S. E. Znamensky and N. M. Znamenskaya, “Distribution of rare-earth elements and yttrium in calcite from the Au–Cu-porphyry ores and host rocks of the Kutuev occurrence (South Urals),” Geologicheskii vestnik. (1), 98–104 (2021).

  28. S. E. Znamensky, N. N. Ankusheva, and N. M. Znamenskaya, “Conditions of formation of the Au–Cu-porphyry mineralization of the Kutuev occurrence (South Urals),” Geol. Izv. Otd. Nauk o Zemle Prir. Resur. AN RB. 26, 8–13 (2019a).

    Google Scholar 

  29. S. E. Znamensky, A. M. Kosarev, and G. T. Shafigullina, “Facies composition, geochemical features, and geodynamic settings of the formation of Late Emsian island arc complexes of the Main Uralian Fault at the South Urals,” Vestn. Permsk. Univ., Geologiya 18 (1), 1–16 (2019b).

    Google Scholar 

  30. S. E. Znamensky, N. N. Ankusheva, and D. A. Artem’ev, “Conditions of formation, composition, and sources of ore-forming fluids of the Bol’shoi Karan gold porphyry deposit, South Urals,” Litosfera 20 (3), 397–410 (2020).

    Google Scholar 

  31. S. E. Znamensky, N. N. Ankusheva, and A. V. Snachev, “The formation conditions and sources of ore-forming fluids of the Nikolaevskoe gold deposit (South Urals),” Russ. Geol. Geophys. 61 (8), 828–837 (2020).

    Article  Google Scholar 

Download references

Funding

This study was conducted under government-financed research projects FMRS-2022-0011 for the Institute of Geology, Ufa Federal Research Center, Russian Academy of Sciences, and AAAA-A19-119061790049-3 for the Institute of Mineralogy, South Urals Federal Research Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. E. Znamensky, D. A. Artemyev or N. N. Ankusheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Znamensky, S.E., Artemyev, D.A. & Ankusheva, N.N. REE in the Calcite of Au–Cu Porphyry Mineralization at the Kutuevsky Occurrence, South Urals: LA–ICP–MS Data. Geochem. Int. 60, 830–840 (2022). https://doi.org/10.1134/S0016702922090105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922090105

Keywords:

Navigation