Skip to main content
Log in

Formation Conditions of the Protoliths of Upper Riphean and Vendian Metapelites in the Bodaibo Zone, Baikal–Patom Foldbelt

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents data on the lithochemistry of Upper Riphean and Vendian metapelites in the Bodaibo structural–facies zone of the Baikal–Patom foldbelt. The typical K2O/Na2O and SiO2/Al2O3 ratios of the metapelites indicate that they have not been affected by potassium metasomatism and silicification processes. The ratios in the metapelites of the TM and FM and of the NAM and HM modules of the rocks suggest that their protoliths consisted mostly of the material of the first sedimentation cycle. Its sources were most likely igneous rocks of intermediate and mafic composition. The composition of the protoliths is comparable to kaolinite, kaolinite–illite–smectite, and chlorite–smectite–illite clays, i.e., it did not principally differ from the composition of most “ordinary” clay rocks. The average values of the chemical index of alteration (CIAcorrect) exceed its threshold value that distinguishes between rocks formed in cold/arid and warm/humid climates, only for metapelites of the Kharlukhtakh, Khaiverga, Aunakit, and Vacha formations. The metapelites of the other levels of the Upper Riphean and Vendian of the Bodaibo zone are composed of thin-grained aluminosilicate clastic material relatively weakly altered by chemical weathering in the paleocatchment areas. The average values of the phosphorus enrichment coefficient in the formations give reason to believe that the paleoproductivity of the sedimentation areas of the Upper Riphean and Vendian was insignificant, despite the locally rather high content of TOC in the metapelites. The metapelites also show no evidence of the presence of “camouflaged” pyroclastics or products of underwater exhalations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. This stage is conventionally referred to as the Medvezhevka–Ballaganakh one. However, inasmuch as the age of its oldest rocks of the Purpol and Medvezhevka formations is commonly thought to be Early Riphean, here and below we discuss only its Ballaganakh part. The age of the Ballaganakh Group is currently thought to be Late Riphean (Kovach et al., 2020 and references therein).

  2. Here and below, the hypothetical protoliths of the formations are listed.

  3. In fact, this and the other stratigraphic units of the Riphean and Vendian sequence of the Bodaibo zone of the Baikal−Patom Foldbelt consist of quartzite-gneisses (gneisses), leucocratic gneisses, plagiogneisses, calc-silicate rocks (scapolite−plagioclase ± zoisite, carbonate gneisses and schists), marbles, aluminous, garnet−biotite−muscovite schists and other metaterrignous rocks).

  4. \({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{*}}}\) means all Fe determined in the form of Fe2O3.

  5. Here and below, TM is the titanium modulus, TiO2/Al2O3; FM is the iron modulus, (\({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{*}}}\) + MnO)/(Al2O3 + TiO2), NAM is the normalized alkalinity modulus, (Na2O + K2O)/Al2O3; HM is the hydrolysate modulus, (Al2O3 + TiO2 + \({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{*}}}\) + MnO)/SiO2; MM is the maficity modulus, (\({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{\text{*}}}\) + MgO)/SiO2; AM is the alkalinity modulus, Na2O/K2O; NM is the sodic modulus, Na2O/Al2O3; and KM is the potassic modulus, K2O/Al2O3 (Yudovich and Ketris, 2000).

  6. It was lately hypothesized that the climatic signal may be lost from marine sediments not only in sandstones but also in thin-grained sediments, because allochthonous material brought from areas with another climate, newly formed authigenic minerals, and other factors may significantly modify the composition of clay sediments (Garzanti et al., 2014; Dinis et al., 2020; and others).

REFERENCES

  1. J. S. Armstrong-Altrin and S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings,” Sediment. Geol. 177, 115–129 (2005).

    Article  Google Scholar 

  2. V. N. Babyak, A. V. Blinov, Yu. I. Tarasova, and A. E. Budyak, “New geological-structural data on the Ozherele, Ykanskoe, Ugakhan, and Golets Vysochaishii gold deposits,” Nauki Zemle Nedropolz. 42 (4), 388–412 (2019).

    Google Scholar 

  3. O. A. Bavinton, “The nature of sulfidic metasediments at Kambalda and their broad relationships with associated ultramafic rocks and nickel ores,” Econ. Geol. 76 (6), 1606–1628 (1981).

    Article  Google Scholar 

  4. V. T. Belichenko, E. V. Sklyarov, N. L. Dobretsov, and O. Tomurtogoo, “Geodynamic map of the Paleoasian ocean. Eastern Segment,” 35 (7–8), 29–41 (1994).

    Google Scholar 

  5. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones,” J. Geol. 91, 611–627 (1983).

    Article  Google Scholar 

  6. S. V. Bogdanova, S. A. Pisarevsky, and Zheng-Xiang Li, “Assembly and breakup of Rodinia (some results of IGCP Project 440),” Stratigraphy. Geol. Correlation 17 (3), 29–45 (2009).

    Google Scholar 

  7. R. Bolnar, B. S. Kamber, S. Moorbath, M. J. Whitehouse, and K. D. Collerson, “Chemical characterization of Earth’s most ancient clastic metasediments from the Isua Greenstone Belt, southern West Greenland,” Geochim. Cosmochim. Acta. 69, 1555–1573 (2005).

    Article  Google Scholar 

  8. K. Bostrom, “The origin and fate of ferromanganoan active ridge sediments,” Stockholm Contrib. Geol. 27 (2), 148–243 (1973).

    Google Scholar 

  9. A. E. Budyak, S. Yu. Skuzovatov, Yu. I. Tarasova, K.‑L. Vang, and N. A. Goryachev, “Common Neoproterozoic–Early Paleozoic evolution of ore-bearing sedimentary complexes in the southern Siberian Craton,” Dokl. Earth Sci. 484 (3), 92–96 (2019).

    Article  Google Scholar 

  10. G. Yu. Butuzova, “Types of the modern hydrothermal and hydrothermal-sedimentary rocks of active zones of the World Ocean,” Litol. Polezn. Iskop., No. 5, 3–23 (1989).

  11. G. Yu. Butuzova, Hydrothermal–Sedimentary Ore Formation in the Red Sea Rift Zone (GEOS, Moscow, 1998) [in Russian].

    Google Scholar 

  12. L. Caracciolo, Eynatten H. von, R. Tolosana-Delgado, S. Critelli, P. Manetti, and P. Marchev, “Petrological, geochemical, and statistical analysis of Eocene–Oligocene sandstones of the Western Thrace basin, Greece and Bulgaria,” J. Sediment. Res. 82, 482–498 (2012).

    Article  Google Scholar 

  13. A. V. Chugaev, A. E. Budyak, I. V. Chernyshev, E. O. Dubinina, B. I. Gareev, K. N. Shatagin, Yu. I. Tarasova, N. A. Goryachev, and S. Yu. Skuzovatov, “Isotopic (Sm–Nd, Pb–Pb, and δ34S) and geochemical characteristics of the metasedimentary rocks of the Baikal–Patom Belt (northern Transbaikalia) and evolution of the sedimentary basin in the Neoproterozoic,” Petrology 26 (3), 213–245 (2018).

    Article  Google Scholar 

  14. A. V. Chugaev, A. E. Budyak, I. V. Chernyshev, K. N. Shatagin, T. I. Oleinikova, Y. I. Tarasova, and S. Y. Skuzovatov, “Sources of clastic material of the Neoproterozoic metasedimentary rocks of the Baikal–Patom belt, northern Transbaikalia: Evidence from Sm-Nd isotope data,” Geochem. Int. 55(1), 60–68 (2017).

    Article  Google Scholar 

  15. N. M. Chumakov, M. A. Semikhatov, and V. N. Sergeev, “Vendian reference section of southern Middle Siberia,” Stratigraphy. Geol. Correlation 21 (4), 359–382 (2013).

    Article  Google Scholar 

  16. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104 (1–4), 1–37 (1993).

    Article  Google Scholar 

  17. R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  18. A. M. Stanevich, A. M. Mazukabzov, A. A. Postnikov, V. K. Nemerov, C. A. Pisapevsky, D. P. Gladkochub, T. V. Donskaya, and T. A. Kornilova, “Northern segment of the Paleoasian ocean: Neoproterozoic deposition history and geodynamics,” Russ. Geol. Geophys. 48 (1), 46–60 (2007).

    Article  Google Scholar 

  19. Diagnostics of Volcanogenic Products in Sedimentary Sequences (Geoprint, Syktyvkar, 2012) [in Russian].

  20. P. A. Dinis, E. Garzanti, A. Hahn, P. Vermeesch, and M. Cabral-Pinto, “Weathering indices as climate proxies. A step forward based on Congo and SW African river muds,” Earth–Sci. Rev. 201, 103039 (2020).

    Article  Google Scholar 

  21. Precambrian Evolution of the Southern Siberian Craton, Ed. by E. V. Sklyarov (SO RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  22. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  23. E. Garzanti, M. Padoan, M. Setti, A. López-Galindo, and I. M. Villa, “Provenance versus weathering control on the composition of tropical river mud (southern Africa),” Chem. Geol. 366, 61–74 (2014).

    Article  Google Scholar 

  24. V. K. Golovenok, Precambrian High-Al Associations (Nedra, Leningrad, 1977) [in Russian].

    Google Scholar 

  25. State Geological Map of the Russian Federation on a Scale 1 : 1 000 000.Aldan–Transbaikalian Series, Sheet O-50 – Bodaibo. Third Generation. Explanatory Note (Kartograf. Fabr. VSEGEI, St. Petersburg, 2010) [in Russian].

  26. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58, 820–829 (1988).

    Google Scholar 

  27. Interpretation of Geochemical Data, Ed. by E. V. Sklyarov (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  28. A. I. Ivanov, “"Ozherel’e” deposit as a new type of bedrock gold deposits in the Bodaibo ore district,” Izv. Sibirsk. Otd. Sektsii Nauk Zemle RAEN, No. 6, 14–26 (2008).

    Google Scholar 

  29. A. I. Ivanov, Baikal–Patom Gold: Geology, Mineralization, and Prospects (FGUP TsNIGRI, Moscow, 2014).

  30. A. I. Ivanov, V. I. Livshits, O. V. Perevalov, T. M. Strakhova, and B. V. Yablonovskii, Precambrian of the Patom Highland (Nedra, Moscow, 1995) [in Russian].

    Google Scholar 

  31. I. Jarvis, W. C. Burnett, Y. Nathan, F. S.M. Almbaydin, A. K.M. Attia, L. N. Castro, R. Flicoteaux, M. E. Hilmy, V. Husain, A. A. Qutawnah, A. Serjani, and Y. N. Zanin, “Phosphorite geochemistry: state of the art and environmental concerns,” Eclogae Geol. Helv. 87, 643–700 (1994).

    Google Scholar 

  32. T. N. Kheraskova, V. A. Bush, A. N. Didenko, and S. G. Samygin, “Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean,” Geotectonics 44 (1), 3–24 (2010).

    Article  Google Scholar 

  33. S. P. Korikovsky and V. S. Fedorovsky, Early Precambrian of the Patom Highland (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  34. A. G. Kossovskaya, “Genetic types of zeolites of stratified formations,” Litol. Polezn. Iskop., No. 2, 23–44 (1975).

  35. V. P. Kovach, E. Yu. Rytsk, S. D. Velikoslavinskii, A. B. Kuznetsov, K-L. Wang, and S-L. Chung, “Age of detrital zircons and sources of terrigenous deposits of the Olokit Zone (Northern Baikal Region),” Dokl. Earth Sci. 493 (2), 600–603 (2020).

    Article  Google Scholar 

  36. G. A. Krinari, E. A. Korolev, and S. N. Pikalev, “Volcaniclastic material in the Paleozoic sequence of Tatarstana: methods of identification and role in oil recovery,” Litosfera, No. 1, 27–38 (2003).

    Google Scholar 

  37. Lena Gold District (Nedra, Moscow, 1971), Vol. 1 [in Russian].

  38. Z. X. Li, S. V. Bogdanova, F. S. Davidson A. Collins, Waele B. De, R. E. Ernst, I. C.W. Fitzsimons, R. A. Fuck, D. P. Gladkochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break-up history of Rodinia: a synthesis,” Precambrian Res. 160 (1–2), 179–210 (2008).

    Article  Google Scholar 

  39. P. Lou, Z. Miao, M. Zheng, X. Zhang, Z. Ruan, and Q. Xu, “Paleogeographic characteristics of the Mengyejing Formation in the Simao Basin during its depositional period and its indication of potash mineralization: A case study of MZK–3 well,” Minerals 11, 338 (2021). https://doi.org/10.3390/min11040338

    Article  Google Scholar 

  40. A. V. Maslov, Sedimentary rocks: Method of Study and Interpretation of Obtained Data (UGGU, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  41. A. V. Maslov and V. N. Podkovyrov, “Position of rocks of riftogenic and collisional sedimentary sequences on different paleogeodynamic diagrams,” Geochem. Int. 59 (2), 113–126 (2021).

    Article  Google Scholar 

  42. A. V. Maslov, V. N. Podkovyrov, E. Z. Gareev, and L. N. Kotova, “Bulk chemical composition of sandstones and paleogeodynamic reconstructions,” Litosfera, No. 6, 33–55 (2016a).

    Google Scholar 

  43. A. V. Maslov, V. N. Podkovyrov, G. A. Mizens, A. D. Nozhkin, A. M. Fazliakhmetov, A. I. Malinovsky, A. K. Khudoley, L. N. Kotova, A. V. Kuptsova, E. Z. Gareev, and R. I. Zainulling, “Tectonic setting discrimination diagrams for terrigenous rocks: a comparison,” Geochem. Int. 54 (7), 569–583 (2016b).

    Article  Google Scholar 

  44. A. V. Maslov, V. N. Podkovyrov, and L. N. Kotova, “Syn-rift clayey rocks: bulk chemical composition and position on discriminant paleogeodynamic diagrams,” Geochem. Int. 57 (6), 682–697 (2019).

    Article  Google Scholar 

  45. J. B. Maynard, R. Valloni, and Shing Ju Ho, “Composition of modern deep-sea sands from arc-related basin,” Geol. Soc. London, Spec. Publ. 10, 551–561 (1982).

    Article  Google Scholar 

  46. S. M. Mclennan, “Weathering and Global Denudation. J. Geol. 1993. 101, 295–303 (1993).

    Google Scholar 

  47. G. L. Mitrofanov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2006).

  48. V. I. Murav’ev, Mineral Parageneses of the Glauconite–Siliceous Formation (Nauka, Moscow, 1983).

    Google Scholar 

  49. A. N. Neelov, “Chemical classification of sedimentary rocks for study of the Precambrian metamorphic complexes,” Early Precambrian Lithology and Geochemistry, Ed. by A. V. Sidorenko (Apatity, 1977), pp. 96–105 [in Russian].

    Google Scholar 

  50. A. N. Neelov, Petrochemical Classification of Metamorphosed Sedimentary and Volcanic Rocks (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  51. L. A. Neimark, E. Yu. Rytsk, B. M. Gorokhovsky, G. V. Ovchinnikova, E. I. Kiseleva, and V. D. Konkin, “Lead isotope composition and genesis of lead–zinc mineralization of the Olokit zone, Northern Baikal region,” Geol. Rudn. Mestorozhd., No. 6, 33–49 (1991).

  52. V. K. Nemerov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGKh SO AN SSSR, Irkutsk, 1989).

  53. V. K. Nemerov and A. M. Stanevich, “Evolution of the Riphean–Vendian biolithogenesis settings in the Baikal mountainous area,” Russ. Geol. Geophys. 42 (3), 456–470 (2001).

    Google Scholar 

  54. V. K. Nemerov, A. M. Stanevich, E. A. Razvozzhaeva, A. E. Budyak, and T. A. Kornilova, “Biogenic sedimentation factors of ore formation in the Neoproterozoic strata of the Baikal–Patom region,” Russ. Geol. Geophys. 51 (5), 572–586 (2010).

    Article  Google Scholar 

  55. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from majorelement chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  56. K. I. Nikashin and S. O. Zorina, “Vulkanogenic material in the Upper Jurassic–Lower Cretaceous deposits of East Russian plate and its sources,” Izv. Saratovsk. Univ. Novaya Ser.: Nauki o Zemle 21 (1), 49–57 (2021).

  57. S. A. Onishchenko and N. V. Sokerina, “Features of the formation of the Golets Vysoschaishii gold-ore black-shale deposit (Bodaibo ore district),” Geol. Ore Deposits 63 (2), 138–155 (2021).

    Article  Google Scholar 

  58. D. Z. Piper and R. B. Perkins, “A modern vs. Permian black shale – the hydrography, primary productivity, and water-column chemistry of deposition,” Chem. Geol. 206, 177–197 (2004).

    Article  Google Scholar 

  59. N. J. Planavsky, O. Rouxel, A. Bekker, S. V. Lalonde, K. O. Konhauser, C. T. Reinhard, and T. W. Lyons, “The evolution of the marine phosphate reservoir,” Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  60. V. N. Podkovyrov, “Terrigenous–carbonate series of the Baikal–Patom folded area,” Petrochemistry of the Precambrian Sedimentary and Volcanosedimentary Formations, Ed. by Yu. M. Sokolov (Nauka, Moscow, 1983), pp. 45–87 [in Russian].

    Google Scholar 

  61. P. E. Potter, J. B. Maynard, and P. J. Depetris, Mud and Mudstones: Introduction and Overview (Springer, 2005).

    Book  Google Scholar 

  62. N. V. Rentgarten and K. I. Kuznetsova, “Pyroclastic material in the Late Jurassic sediments of the Russian Platform,” Dokl. Akad. Nauk SSSR 173 (6), 1422–1425 (1967).

    Google Scholar 

  63. B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  64. I. K. Rundqvist, V. A. Bobrov, T. N. Smirnova, M. Yu. Smirnov, M. Yu. Danilova, and A. A. Ashcheukov, “Stages of formation of the Bodaibo gold district,” Geol. Rudn. Mestorozhd. 34 (6), 3–15 (1992).

    Google Scholar 

  65. V. L. Rusinov, O. V. Rusinova, S. G. Kryazhev, Yu. V. Shchegolkov, E. I. Alysheva, and S. E. Borisovskii, “Wall-rock metasomatism of carbonaceous terrigenous rocks in the Lena gold district,” Geol. Ore Deposits 50 (1), 1–40 (2008).

    Article  Google Scholar 

  66. K. M. Ryan and D. M. Williams, “Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins,” Chem. Geol. 242, 103–125 (2007).

    Article  Google Scholar 

  67. E. Yu. Rytsk, V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, E. S. Bogomolov, and A. B. Kotov, “Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt,” Geotectonics 46 (5), 349–377 (2011).

    Article  Google Scholar 

  68. E. V. Shchepetova, M. A. Rogov, O. V. Zerkal, E. N. Samarin, I. E. Gvozdeva, and V. L. Kosorukov, “Clinoptilolite in the Upper Jurassic deposits of the Russian Plate: “camouflaged” pyroclastics or indicator of productivity of biogenic silica,” Fundamental Problems of Study of Volcanosedimentary, Terrigenous, and Carbonate Complexes. Proc. All-Russian Lithological Conference in Memory of A. G. Kossovskaya and I. V. Khvorova, Moscow, Russia, 2020, Ed. by E. V. Shchepetova (GEOS, Moscow, 2020), pp. 269–276 [in Russian].

  69. A. M. Stanevich, “Environments of accumulation of Neoproterozoic marine deposits and bacterial biocenosis of the southern Siberian Platform,” Vestn. IrGTU 3 (86), 71–78 (2014).

    Google Scholar 

  70. N. M. Strakhov, Geochemical Problems of the Modern Oceanic Lithogenesis (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  71. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell, Oxford, 1985).

    Google Scholar 

  72. N. J. Tosca, D. T. Johnston, A. Mushegian, D. H. Rothman, R. E. Summons, and A. H. Knoll, “Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans,” Geochim. Cosmochim. Acta. 74, 1579–1592 (2010).

    Article  Google Scholar 

  73. N. Tribovillard, T. J. Algeo, T. Lyons, and A. Riboulleau, “Trace metals as paleoredox and paleoproductivity proxies: an update,” Chem. Geol. 232, 12–32 (2006).

    Article  Google Scholar 

  74. S. P. Verma and J. S. Armstrong-Altrin, “Geochemical discrimination of siliciclastic sediments from active and passive margin settings,” Sediment. Geol. 332, 1–12 (2016).

    Article  Google Scholar 

  75. J. N. J. Visser and G. M. Young, “Major element geochemistry and paleoclimatology of the Permo-Carboniferous glaciogene Dwyka Formation and post-glacial mudrocks in Southern Africa,” Palaeogeogr. Palaeoclimat. Palaeoecol. 81, 49–57 (1990).

    Article  Google Scholar 

  76. V. V. Yarmolyuk, V. P. Kovach, I. K. Kozakov, A. M. Kozlovskii, A. B. Kotov, and E. Yu. Rytsk, “Mechanisms of continental crust formation in the Central Asian Foldbelt,” Geotectonics 46 (4), 251–272 (2012).

    Article  Google Scholar 

  77. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  78. Ya. E. Yudovich and M. P. Ketris, Geochemical and Mineralogical Indicators of Volcanogenic Products in Sedimentary Sequences (Nauka, Yekaterinburg, 2010) [in Russian].

    Google Scholar 

  79. Ya. E. Yudovich, M. P. Ketris, and N. V. Rybina, Titanium Geochemistry (IG Komi NTs UrO RAN, Syktyvkar, 2018) [in Russian].

  80. Ya. E. Yudovich, M. P. Ketris, A. N. Shulepova, and N. S. Lavrenko, “Geochemical diagnostics of volcanogenic material in the black shapes of the Lemva zone of the Urals,” Geokhimiya, No. 10, 1464–1476 (1986).

    Google Scholar 

  81. M. A. Yudovskaya, V. V. Distler, V. Yu. Prokofiev, and N. N. Akinfiev, “Gold mineralisation and orogenic metamorphism in the Lena province of Siberia as assessed from Chertovo Koryto and Sukhoi Log deposits,” Geosci. Front. 7, 453–481 (2016).

    Article  Google Scholar 

  82. L. P. Zonenshain, M. I. Kuzmin, and L. M. Natapov, “Tectonics of Lithospheric Plates of the USSR (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  83. S. O. Zorina and N. I. Afanas’eva, ““Camouflaged” pyroclastic material in the Upper Cretaceous–Miocene deposits of the southeastern East European Craton,” Dokl. Earth Sci. 463 (2), 770–772 (2015).

    Article  Google Scholar 

  84. S. O. Zorina, K. I. Nikashin, and M. Yu. Sokerin, “Geochemical indicators of “camouflaged” pyroclastic material in the Upper Jurassic–Lower Cretaceous deposits of the eastern Russian Platform,” Dokl. Earth Sci. 493 (2), 608–611 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors than the anonymous reviewer and M.A. Levitan for valuable comments, which led us to improve the manuscript. S.A. Dub is thanked for help with choosing the necessary literature. We also thank N.S. Glushkova for preparing all illustrations for this publication.

Funding

This study was conducted under government-financed research projects for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences, and the Geological Institute, Russian Academy of Sciences (project nos. FMUW-2021-0003 and 0135-2019-0043). The study of the “camouflaged” pyroclastics was supported by the Russian Science Foundation (project no. 19-17-00099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Podkovyrov or A. V. Maslov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podkovyrov, V.N., Maslov, A.V. Formation Conditions of the Protoliths of Upper Riphean and Vendian Metapelites in the Bodaibo Zone, Baikal–Patom Foldbelt. Geochem. Int. 60, 841–861 (2022). https://doi.org/10.1134/S0016702922090051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922090051

Keywords:

Navigation