Skip to main content
Log in

Equilibrium-Kinetic Modeling of Uranium Behavior in the System Meteoric Groundwater–U-Containing Siltstone at Active Water Exchange

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents results of modeling the chemical interactions of Quaternary meteoric waters with siltstones of the upper part of the Vendian Padun Formation of the Mezen Syneclise, Arkhangelsk region, Russia. Equilibrium and equilibrium-kinetic approaches were applied. It is shown that under conditions of intensive water exchange and low temperature, due to low rates of interaction of minerals with water, the redox buffer of rock-forming minerals at this stage of the process makes a subordinate contribution to the dissolution of uranium. Therefore, for a sufficiently long time, the main agent of mobilization of uranium in rocks is oxygen dissolved in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. A. Alekseyev, “Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite,” Geochem. Int. 45 (8), 770–780 (2007).

    Article  Google Scholar 

  2. V. A. Alekseyev, M. B. Bukaty, V. P. Zverev, M. V. Mironenko, B. N. Ryzhenko, M. V. Charykova, O. V. Chudaev, and S. L. Shvartsev, Geological Evolution and Self-Organization of the Water–Rock System. Volume 1. WaterRock System in the Earth’s Crust: Interaction, Kinetics, Equilibrium, and Modeling (SO RAN, Novosibirsk, 2005) [in Russian].

  3. A. E. Blum and L. L. Stillings, “Feldspar dissolution kinetics,” in Chemical Weathering Rates of Silicate Minerals, Ed. by A. F. White and S. L. Brantley, Rev. Mineral. Geochem. 31, 291–351 (1995).

    Google Scholar 

  4. P. V. Brady and J. V. Walther, “Kinetics of quartz dissolution at low temperatures,” Chem. Geol. 82, 253–264 (1990).

    Article  Google Scholar 

  5. S. L. Brantley, “Reaction kinetics of primary rock-forming minerals under ambient conditions,” Treatise on Geochemistry, Ed. by H. D. Holland (Elsevier, Amsterdam, 2003), pp. 73–117.

    Google Scholar 

  6. E. M. Dutova, A. N. Nikitenkov, V. D. Pokrovskiy, D. Banks, B. S. Frengstad, and V. P. Parnachev, “Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation,” J. Environ. Radioact. 178, 63–76 (2017).

    Article  Google Scholar 

  7. I. Grenthe, J. Fuger, R. J.M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen–Trung, and H. Wanner, Chemical Thermodynamics of Uranium (Reprint), Ed. by H. Wanner and I. Forest (OECD Nucl. Energy Agency Paris, 2004).

    Google Scholar 

  8. R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, and M. H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium. Chemical Thermodynamics 5 (Elsevier, Amsterdam, 2003), Vol. 5.

    Google Scholar 

  9. H. C. Helgeson, T. H. Brown, A. Nigrini, and T. A. Jones, “Calculation of mass transfer in geochemical processes involving aqueous solutions,” Geochim. Cosmochim. Acta. 3, 569–592 (1970).

    Article  Google Scholar 

  10. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C,” Am. J. Sci. 281, 1249–1516 (1981).

    Article  Google Scholar 

  11. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPC-RT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C,” Comp. Geosci. 18 (7), 899–947 (1992).

    Article  Google Scholar 

  12. A. C. Lasaga, “Transition state theory,” Rev. Mineral. 8, 135–169 (1981).

    Google Scholar 

  13. A. I. Malov, “Water–rock interaction in Vendian sandy–clayey rocks of the Mezen Syneclise,” Lithol. Miner. Resour. 39 (4), 345–356 (2004).

    Article  Google Scholar 

  14. A. I. Malov, “Evolution of groundwater chemistry in coastal aquifers of the south-eastern White Sea area (NW Russia) using 14C and 234U–238U dating,” Sci. Total Environ. 616–617, 1208–1223 (2018).

    Article  Google Scholar 

  15. A. I. Malov and S. B. Zykov, “Study of the mobilization of uranium isotopes in a sandstone aquifer in combination with groundwater data,” Water 12, 112 (2020).

    Article  Google Scholar 

  16. A. I. Malov, G. P. Kiselev, G. P. Rudik, and S. B. Zykov, “Uranium isotopes in groundwater of the Mezen Syneclise Vend,” Water Resour. 36 (6), 689–698 (2009).

    Article  Google Scholar 

  17. A. I. Malov, E. S. Sidkina, and B. N. Ryzhenko, “Model of the Lomonosov diamond deposit as a water–rock system: migration species, groundwater saturation with rock-forming and ore minerals, and ecological assessment of water quality,” Geochem. Int. 55 (12), 1118–1130 (2017).

    Article  Google Scholar 

  18. Metallogeny of Karelia, Ed. by S. I. Rybakova and A. I. Golubeva (KarNTs RAN, Petrozavodsk, 1999) [in Russian].

  19. M. V. Mironenko and M. Y. Zolotov, “Equilibrium–kinetic model of water–rock interaction. Geochem. Int. 50 (1), 1–7 (2012).

    Article  Google Scholar 

  20. M. V. Mironenko, T. Yu. Melikhova, M. Yu. Zolotov, and N. N. Akinfiev, “GEOCHEQ_M: Program complex for thermodynamic and kinetic modeling of geochemical processes in rock–water–gas system. Version 2008,” Vestn. Otd. Nauk Zemle RAN 1 (22), (2008).

  21. E. H. Oelkers, H. C. Helgeson, E. L. Shock, D. A. Sverjensky, J. W. Johnson, and V. A. Pokrovskii, “Summary of the apparent standard partial molal Gibbs free energies of formation of aqueous species, minerals, and gases at pressures 1 to 5000 bars and temperatures 25 to 1000°C,” J. Phys. Chem. Ref. Data. 24 (4), 1401–1560 (1995).

    Article  Google Scholar 

  22. J. Palandri and Y. Kharaka, A Compilation of Rate Parameters of Water–Mineral Interaction Kinetics for Application to Geochemical Modeling (Menlo Park, U.S. Geological Survey, 2004).

    Book  Google Scholar 

  23. V. V. Petrov and A. A. Semenchuk, “Ecological-geochemical conditions of the Severnaya Dvina groundwater basin,” Regional. Geol. Metallogen. 71, 84–92 (2017).

    Google Scholar 

  24. O. S. Pokrovsky, S. V. Golubev, J. Schott, and A. Castillo, “Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm. pCO2,” Chem. Geol. 265 (1), 20–32 (2009).

    Article  Google Scholar 

  25. E. L. Shock, D. C. Sassani, and H. Betz, “Uranium in geologic fluids: estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures,” Geochim. Cosmochim. Acta. 61 (20), 4245–4266 (1997).

    Article  Google Scholar 

  26. M. Y. Zolotov and M. V. Mironenko, “Timing of acid weathering on Mars: A kinetic–thermodynamic assessment,” J. Geophys. Res.: Planets 112, E07006 (2007).

    Google Scholar 

Download references

Funding

This study was supported by Russian Foundation for Basic Research, project no. 20-05-00045, and the Ministry of Science and Higher Education of the Russian Federation, grant AAAA-A19-119011890018-3. The GECHEQ M database was updated with kinetic constants under government-financed research project for the Laboratory for Modeling Hydrogeochemical and Hydrothermal Processes at Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Mironenko, E. S. Sidkina or A. I. Malov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, M.V., Sidkina, E.S. & Malov, A.I. Equilibrium-Kinetic Modeling of Uranium Behavior in the System Meteoric Groundwater–U-Containing Siltstone at Active Water Exchange. Geochem. Int. 60, 862–868 (2022). https://doi.org/10.1134/S0016702922090038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922090038

Keywords:

Navigation