Skip to main content
Log in

Redox Freezing and Melting during Peridotite Interaction with Carbonated Metasediments and Metabasics: Experiments at 10 GPa

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The hypothesis of redox freezing is based on the assumption that a Fe–Ni metal phase becomes stable in the peridotite mantle at increasing pressure and can serve as a reducer for carbonate–silicate melts. \({\text{CO}}_{3}^{{2 - }}\) reduction and formation of elementary C (graphite or diamond) result in an increase in the solidus temperature and melt freezing. Thermodynamic calculations show that equilibrium oxygen fugacity in peridotite with carbon and magnesite is significantly lower than the values buffered by the mineral assemblages of metasediments (garnet–kyanite–SiO2–aragonite–elemental carbon) or eclogites (pyroxene–garnet–magnesite–elemental carbon). Hence, redox interaction between carbon-bearing peridotites and metasediments or eclogites may occur in the absence of metal and even in a Fe-free system. To explore this suggestion, we conducted experiments on interaction between forsterite (as a peridotite proxy) with synthetic mixtures simulating carbonatized metasediment (SiO2 + CaCO3 + Al2O3) and carbonatized eclogite (SiO2 + MgCO3 ± Al2O3 ± CaO) at 10 GPa and 1200–1500°C. To reduce the transport of major components, the mixtures were separated by a graphite disc, which also served as a source of C. The interaction resulted in the decarbonation of the carbonate-bearing metasediment or eclogite with diamond formation on the surface of the graphite disc. The graphite disc was dissolved at contact with peridotite, and metasomatic zoning developed. Pyroxene and magnesite with low Ca contents appeared in the distal metasomatic zone. The contents of Ca in the newly formed pyroxene and carbonate increases toward the graphite disc, and high-Ca pyroxene and garnet were observed in the proximal metasomatic zone. The obtained results indicate that coupled redox reactions occur in peridotite and metasediment (or eclogite): Mg2SiO4 + C + O2 = MgSiO3 +MgCO3 and CaCO3 + 1/3Al2S-iO5 + 2/3SiO2 = 1/3Ca3Al2Si3O12 + C + O2, respectively. The reactions occur owing to oxygen diffusion along intergranular melt channels. The interaction also involves the transfer of major cations, which resulted in the formation of carbonatized lherzolite and a diamond-bearing eclogite assemblage. Such a process is possible in nature at a contact of carbonated metasediment or eclogite with peridotite. The obtained results indicate that the presence of Fe–Ni metal is not necessary for redox freezing. The processes modeled in the experiments provide a possible explanation for the existence of diamond-rich eclogites and the scarcity of diamond in peridotite xenoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. A. M. Ali, A. E. Maurice, I. K. Pitcairn, A. H. Ahmed, M. K. Azer, A. Boskabadi, B. R. Bakhit, and M. G. Shahien, “Neoproterozoic and Cretaceous mantle oxidation states: Controls and heterogeneity through time,” Lithos 356–357, 105375 (2020).

    Article  Google Scholar 

  2. J. C. Alt and D. A.H. Teagle, “The uptake of carbon during alteration of ocean crust,” Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Article  Google Scholar 

  3. K. R. Anderson and M. P. Poland, “Abundant carbon in the mantle beneath Hawai‘I,” Nature Geosci. 10, 704–708 (2017).

    Article  Google Scholar 

  4. M. Arima, Y. Kozai, and M. Akaishi, “Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions,” Geology 30, 691–694 (2002).

    Article  Google Scholar 

  5. C. Ballhaus, “Is the upper mantle metal-saturated?” Earth Planet. Sci. Lett. 132, 75–86 (1995).

    Article  Google Scholar 

  6. G. E. Bebout, “Metamorphic chemical geodynamics of subduction zones,” Earth Planet. Sci. Lett. 260, 373–393 (2007).

    Article  Google Scholar 

  7. G. E. Bebout and M. D. Barton, “Metasomatism during subduction: products and possible paths in the Catalina Schist, California,” Chem. Geol. 108, 61–92 (1993).

    Article  Google Scholar 

  8. H. Behrens, Y. Zhang, M. Leschik, M. Wiedenbeck, G. Heide, and G. H. Frischat, “Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts,” Earth Planet. Sci. Lett. 254, 69–76 (2007).

    Article  Google Scholar 

  9. R. G. Berman, “Mixing properties of Ca–Mg–Fe–Mn garnets,” Am. Mineral. 75, 328–344 (1990).

    Google Scholar 

  10. C. Biellmann, P. Gillet, and J. Peyronneau, “Experimental evidence for carbonate stability in the Earth’s lower mantle,” Earth Planet. Sci. Lett. 118, 31–41 (1993).

    Article  Google Scholar 

  11. G. P. Brey, V. K. Bulatov, A. V. Girnis, and Y. Lahaye, “Experimental melting of carbonated peridotite at 6–10 GPa,” J. Petrol. 49, 797–821 (2008).

    Article  Google Scholar 

  12. G. P. Brey, A. V. Girnis, V. K. Bulatov, H. E. Hofer, A. Gerdes, and A. B. Woodland, “Reduced sediment melting at 7.5–12 GPa: phase relations, geochemical signals and diamond nucleation,” Contrib. Mineral. Petrol. 170, 18 (2015).

    Article  Google Scholar 

  13. M. N. Brounce, K. A. Kelley, and E. Cottrell, “Variations in Fe3+/ΣFe of Mariana arc basalts and mantle wedge fO2,” J. Petrol. 55, 2513–2536 (2014).

    Article  Google Scholar 

  14. M. Brounce, E. Cottrell, and K. A. Kelley, “The redox budget of the Mariana subduction zone,” Earth Planet. Sci. Lett. 528, 115859 (2019).

    Article  Google Scholar 

  15. V. K. Bulatov, G. P. Brey, A. V. Girnis, A. Gerdes, and H. E. Höfer, “Carbonated sediment–peridotite interaction and melting at 7.5–12 GPa,” Lithos 200–201, 368–385 (2014).

    Article  Google Scholar 

  16. A. D. Burnham, G. P. Bulanova, C. B. Smith, S. C. Whitehead, S. C. Kohn, L. Gobbo, and M. J. Walter, “Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle,” Lithos 265, 199–213 (2016).

    Article  Google Scholar 

  17. V. Busigny, P. Cartigny, P. Philippot, M. Ader, and M. Javoy, “Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustres nappe (western Alps, Europe),” Earth Planet. Sci. Lett. 215, 27–42 (2003).

    Article  Google Scholar 

  18. D. Canil and C. M. Scarfe, “Phase relations in peridotite + CO2 systems to 12 GPa: implications for the origin of kimberlite and carbonate stability in the Earth’s upper mantle,” J. Geophys. Res. Solid Earth 95, 15805–15816 (1990).

    Article  Google Scholar 

  19. E. Cannao, M. Tiepolo, G. E. Bebout, and M. Scambelluri, “Into the deep and beyond: Carbon and nitrogen subduction recycling in secondary peridotites,” Earth Planet. Sci. Lett. 543, 116328 (2020).

    Article  Google Scholar 

  20. P. Cartigny, M. Palot, E. Thomassot, and J. W. Harris, “Diamond formation: A stable isotope perspective,” Annu. Rev. Earth Planet. Sci. 42, 699–732 (2014).

    Article  Google Scholar 

  21. I. L. Chinn, S. H. Perritt, J. Stiefenhofer, and R. A. Stern, “Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data,” Mineral. Petrol. 112 (Suppl. 1), S197–S207 (2018).

    Article  Google Scholar 

  22. J. A. Dalton and B. J. Wood, “The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions,” Contrib. Mineral. Petrol. 114, 501–509 (1993).

    Article  Google Scholar 

  23. R. Dasgupta and M. M. Hirschmann, “The deep carbon cycle and melting in Earth’s interior,” Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  24. B. Debret, P. Bouilhol, M. L. Pons, and H. Williams, “Carbonate transfer during the onset of slab devolatilization: new insights from Fe and Zn stable isotopes,” J. Petrol. 59, 1145–1166 (2018).

    Article  Google Scholar 

  25. J. W. E. Drewitt, M. J. Walter, H. Zhang, S. C. McMahon, D. Edwards, B. J. Heinen, O. T. Lord, S. Anzellini, and A. K. Kleppe, “The fate of carbonate in oceanic crust subducted into Earth’s lower mantle,” Earth Planet. Sci. Lett. 511, 213–222 (2019).

    Article  Google Scholar 

  26. D. H. Eggler and D. R. Baker, “Reduced volatiles in the system C–O–H: implications to mantle melting, fluid formation, and diamond genesis,” In High-Pressure Research in Geophysics, Ed. by S. Akimoto and M. H. Manghnani (Tokyo, 1982), pp. 237–250.

    Google Scholar 

  27. J. Eguchi and R. Dasgupta, “CO2 content of andesitic melts at graphite–saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite,” Contrib. Mineral. Petrol. 172, 12 (2017).

    Article  Google Scholar 

  28. Y. Fedortchouk, “A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies,” Earth-Sci. Rev. 193, 45–65 (2019).

    Article  Google Scholar 

  29. Y. Fedortchouk and Z. Zhang, “Diamond resorption: link to metasomatic events in the mantle or record of magmatic fluid in kimberlitic magma?,” Can. Mineral. 49, 707–719 (2011).

    Article  Google Scholar 

  30. Y. Fedortchouk, C. Liebske, and C. McCammon, “Diamond destruction and growth during mantle metasomatism: An experimental study of diamond resorption features,” Earth Planet. Sci. Lett. 506, 493–506 (2019).

    Article  Google Scholar 

  31. M. W. Förster, Y. Bussweiler, D. Prelevic, N. R. Daczko, S. Buhre, R. Mertz-Kraus, and S. F. Foley, “Sediment-peridotite reaction controls fore–arc metasomatism and arc magma geochemical signatures,” Geosci. 11, 372 (2021).

    Article  Google Scholar 

  32. D. J. Frost and C. A. McCammon, “The redox state of Earth’s mantle,” Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  33. D. J. Frost, C. Liebske, F. Langenhorst, C. A. McCammon, R. G. Trønnes, and D. C. Rubie, “Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle,” Nature 428, 409–412 (2004).

    Article  Google Scholar 

  34. M. E. Galvez, O. Beyssac, I. Martinez, K. Benzerara, K. Chaduteau, B. Malvoisin, and J. Malavieille, “Graphite formation by carbonate reduction during subduction,” Nature Geosci. 6, 473–477 (2013).

    Article  Google Scholar 

  35. E. Gardes, M. Laumonier, M. Massuyeau, and F. Gaillard, “Unravelling partial melt distribution in the oceanic low velocity zone,” Earth Planet. Sci. Lett. 540, 116242 (2020).

    Article  Google Scholar 

  36. A. R. Gerrits, E. C. Inglis, B. Dragovic, P. G. Starr, E. F. Baxter, and K. W. Burton, “Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet,” Nature Geosci. 12, 1029–1033 (2019).

    Article  Google Scholar 

  37. A. V. Girnis, G. P. Brey, V. K. Bulatov, H. E. Höfer, and A. B. Woodland, “Graphite to diamond transformation during sediment–peridotite interaction at 7.5 and 10.5 GPa,” Lithos 310–311, 302–313 (2018).

    Article  Google Scholar 

  38. J. S. Gorce, M. J. Caddick, and R. J. Bodnar, “Thermodynamic constraints on carbonate stability and carbon volatility during subduction,” Earth Planet. Sci. Lett. 519, 213–222 (2019).

    Article  Google Scholar 

  39. T. Hammouda and D. Laporte, “Ultrafast mantle impregnation by carbonatite melts,” Geology 28, 283–285 (2000).

    Article  Google Scholar 

  40. T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamor. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  41. M. Isshiki, T. Irifune, K. Hirose, S. Ono, Y. Ohishi, T. Watanuki, E. Nishibori, M. Takata, and M. Sakata, “Stability of magnesite and its high-pressure form in the lowermost mantle,” Nature 427, 60–63 (2004).

    Article  Google Scholar 

  42. D. E. Jacob, S. Piazolo, A. Schreiber, and P. Trimby, “Redox–freezing and nucleation of diamond via magnetite formation in the Earth’s mantle,” Nature Commun. 7, 11891 (2016).

    Article  Google Scholar 

  43. D. M. Kerrick and J. Connolly, “Subduction of ophicarbonates and recycling of CO2 and H2O,” Geology 26, 375–378 (1998).

    Article  Google Scholar 

  44. M. Kopylova, O. Navon, L. Dubrovinsky, and G. Khachatryan, “Carbonatitic mineralogy of natural diamond-forming fluids,” Earth Planet. Sci. Lett. 291, 126–137 (2010).

    Article  Google Scholar 

  45. A. V. Korsakov and J. Hermann, “Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks,” Earth Planet. Sci. Lett. 241, 104–118 (2006).

    Article  Google Scholar 

  46. Y. -H. Li and J. E. Schoonmaker, “Chemical composition and mineralogy of marine sediments,” Treatise on Geochemistry 7, 1–35 (2003).

    Google Scholar 

  47. A. M. Logvinova, A. Shatskiy, R. Wirth, A. A. Tomilenko, S. S. Ugap’eva, and N. V. Sobolev, “Carbonatite melt in type Ia gem diamond,” Lithos 342–343, 463–467 (2019).

    Article  Google Scholar 

  48. R. W. Luth, “Diamonds eclogites, and the oxidation state of the Earth’s mantle,” Science 261, 66–68 (1993).

    Article  Google Scholar 

  49. R. W. Luth, “Carbon and carbonates in the mantle,” In Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd,” Ed. by Y. Fei, C. M. Bertka, and B. O.Mysen, (The Geochemical Society, Houston, 1999), pp. 297–316

    Google Scholar 

  50. R. W. Luth and T. Stachel, “The buffering capacity of lithospheric mantle: implications for diamond formation,” Contrib. Mineral. Petrol. 168, 1083 (2014).

    Article  Google Scholar 

  51. A. M. Martin and T. Hammouda, “Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa – a potential mechanism for diamond formation during subduction,” Eur. J. Mineral. 23, 5–16 (2011).

    Article  Google Scholar 

  52. N. S. Martirosyan, K. D. Litasov, A. Shatskiy, and E. Ohtani, “Reactions of iron with calcium carbonate at 6 GPa and 1273–1873 K: implications for carbonate reduction in the deep mantle,” Russ. Geol. Geophys. 56, 1322–1331 (2015).

    Article  Google Scholar 

  53. N. S. Martirosyan, T. Yoshino, A. Shatskiy, A. Chanyshev, and K. Litasov, “The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle,” Phys. Earth Planet. Int. 259, 1–9 (2016).

    Article  Google Scholar 

  54. N. S. Martirosyan, A. Shatskiy, A. D. Chanyshev, K. D. Litasov, I. V. Podborodnikov, and T. Yoshino, “Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle,” Lithos 326–327, 435–445 (2019).

    Article  Google Scholar 

  55. V. Matjuschkin, A. B. Woodland, D. Frost, and G. M. Yaxley, “Reduced methane–bearing fluids as a source for diamond,” Sci. Rep. 10, 6961 (2020).

    Article  Google Scholar 

  56. M. D. Menzel, C. J. Garrido, V. L. Sanchez-Vizcaino, K. Hidas, and C. Marchesi, “Subduction metamorphism of serpentinite-hosted carbonates beyond antigorite–serpentinite dehydration (Nevado–Filabride Complex, Spain),” J. Metamorph. Geol. 37, 681–715 (2019).

    Article  Google Scholar 

  57. B. Messiga, J. R. Kienast, G. Rebay, M. P. Riccardi, and R. Tribuzio, “Cr-rich magnesiochloritoid eclogites from the Monviso ophiolites (Western Alps, Italy),” J. Metamorph. Geol. 17, 287–299 (1999).

    Article  Google Scholar 

  58. S. Mikhail, F. M. McCubbin, F. E. Jenner, S. B. Shirey, D. Rumble, and R. Bowden, “Diamondites: evidence for a distinct tectono–thermal diamond‑forming event beneath the Kaapvaal craton,” Contrib. Mineral. Petrol. 174, 71 (2019).

    Article  Google Scholar 

  59. H. Morishima, T. Kato, M. Suto, E. Ohtani, S. Urakawa, W. Utsumi, O. Shimomura, and T. Kikegawa, “The phase boundary between α- and ß-Mg2SiO4 determined by in situ X-ray observation,” Science 265, 1202–1203 (1994).

    Article  Google Scholar 

  60. Y. Moussallam, M. -A. Longpré, C. McCammon, A. Gomez-Ulla, E. F. Rose-Koga, B. Scaillet, N. Peters, E. Gennaro, R. Paris, and C. Oppenheimer, “Mantle plumes are oxidized,” Earth Planet. Sci. Lett. 527, 115798 (2019).

    Article  Google Scholar 

  61. E. Mposkos, I. Baziotis, and A. Proyer, “Metamorphic reprocessing of a serpentinized carbonate-bearing peridotite after detachment from the mantle wedge: A P–T path constrained from textures and phase diagrams in the system CaO–MgO–Al2O3–SiO2–CO2–H2O,” Lithos 118, 349–364 (2010).

    Article  Google Scholar 

  62. B. K. Mukherjee, H. K. Sachan, Y. Ogasawara, A. Muko, and N. Yoshioka, “Carbonate-bearing UHPM rocks from the Tso-Morari region, Ladakh, India: petrological implications,” Int. Geol. Rev. 45, 49–69 (2003).

    Article  Google Scholar 

  63. O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle-derived fluids in diamond micro-inclusions,” Nature 335, 784–789 (1988).

    Article  Google Scholar 

  64. Y. N. Pal’yanov, A. G. Sokol, Y. M. Borzdov, and A. F. Khokhryakov, “Fluid-bearing alkaline–carbonate melts as the medium for the formation of diamonds in the Earth’s mantle: an experimental study,” Lithos 60, 145–159 (2002).

    Article  Google Scholar 

  65. Y. N. Pal’yanov, A. G. Sokol, A. A. Tomilenko, and N. V. Sobolev, “Conditions of diamond formation through carbonate-silicate interaction,” Eur. J. Mineral. 17, 207–214 (2005).

    Article  Google Scholar 

  66. H. Palme and H. St.C. O’Neill, “Cosmochemical estimates of mantle composition, In Treatise on Geochemistry, 2nd Ed. 3, 1–39 (2014).

  67. Y. N. Palyanov, Y. V. Bataleva, A. G. Sokol, Y. M. Borzdov, I. N. Kupriyanov, V. N. Reutsky, and N. V. Sobolev, “Mantle–slab interaction and redox mechanism of diamond formation,” Proc. Nat. Acad. Sci. 11, 20408–20413 (2013).

    Article  Google Scholar 

  68. A. L. Perchuk, V. O. Yapaskurt, W. L. Griffin, and M. Y. Gain S.E.M. Shur, “Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes,” Lithos 302, 203–223 (2018).

    Article  Google Scholar 

  69. A. L. Perchuk, A. A. Serdyuk, and N. G. Zinovieva, “Subduction sediment-lherzolite interaction at 2.9 GPa: Effects of metasomatism and partial melting,” Petrology 27, 467–488 (2019).

    Article  Google Scholar 

  70. D. C. Petts, T. Stachel, R. A. Stern, L. Hunt, and G. Fomradas, “Multiple carbon and nitrogen sources associated with the parental mantle fluids of fibrous diamonds from Diavik, Canada, revealed by SIMS microanalysis,” Contrib. Mineral. Petrol. 171, 17 (2016).

    Article  Google Scholar 

  71. T. Plank and C. H. Langmuir, “The chemical composition of subducting sediment and its consequences for the crust and mantle,” Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  72. T. Plank and C. E. Manning, “Subducting carbon,” Nature 574, 343–352 (2019).

    Article  Google Scholar 

  73. S. Poli, “Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids,” Nature Geosci. 8, 633–636 (2015).

    Article  Google Scholar 

  74. A. Rohrbach, C. Ballhaus, U. Golla-Schindler, P. Ulmer, V. S. Kamenetsky, and D. V. Kuzmin, “Metal saturation in the upper mantle,” Nature 449, 456–458 (2007).

    Article  Google Scholar 

  75. A. Rohrbach and M. W. Schmidt, “Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling,” Nature 472, 209–212 (2011).

    Article  Google Scholar 

  76. A. Rosenthal, G. M. Yaxley, D. H. Green, J. Hermann, I. Kovács, and C. Spandler, “Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle,” Sci. Rep. 4, 6099 (2014).

    Article  Google Scholar 

  77. N. L. Ross, M. Akaogi, A. Navrotsky, J. Susaki, and P. McMillan, “Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation,” J. Geophys. Res. 91, 4685–4696 (1986).

    Article  Google Scholar 

  78. I. D. Ryabchikov, D. H. Green, V. J. Wall, and G. Brey, “The oxidation state of carbon in the environment of the reduced-velocity zone,” Geochem. Int. 18, 148–158 (1981).

    Google Scholar 

  79. S. S. M. Santos, M. L. Marcondes, J. F. Justo, and L. V. C. Assali, “Stability of calcium and magnesium carbonates at Earth’s lower mantle thermodynamic conditions,” Earth Planet. Sci. Lett. 506, 1–7 (2019).

    Article  Google Scholar 

  80. M. Scambelluri, H. L. M. Van Roermund, and T. Pettke, “Mantle wedge peridotites: Fossil reservoirs of deep subduction zone processes Inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps),” Lithos 120, 186–201 (2010).

    Article  Google Scholar 

  81. I. S. Sharygin, A. Shatskiy, K. D. Litasov, A. D. Golovin, E. Ohtani, and N. P. Pokhilenko, “Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca–rich suite of inclusions,” Contrib. Mineral. Petrol. 173, 22 (2018).

    Article  Google Scholar 

  82. S. B. Shirey, P. Cartigny, D. G. Frost, S. Keshav, F. Nestola, P. Nimis, D. G. Pearson, N. V. Sobolev, and M. J. Walter, “Diamonds and the geology of mantle carbon,” Rev. Mineral. Geochem. 75, 355–421 (2013).

    Article  Google Scholar 

  83. S. Y. Skuzovatov and D. A. Zedgenizov, “Protracted fluid-metasomatism of the Siberian diamondiferous subcontinental lithospheric mantle as recorded in coated, cloudy and monocrystalline diamonds,” Mineral. Petrol. 113, 285–306 (2019).

    Article  Google Scholar 

  84. K. A. Smart, L. M. Heaman, T. Chacko, A. Simonetti, M. Kopylova, D. Mah, and D. Daniels, “The origin of high-MgO diamond eclogites from the Jericho Kimberlite, Canada,” Earth Planet. Sci. Lett. 284, 527–537 (2009).

    Article  Google Scholar 

  85. K. A. Smart, S. Tappe, R. A. Stern, S. J. Webb, and L. D. Ashwal, “Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds,” Nature Geosci. 9, 255–259 (2016).

    Article  Google Scholar 

  86. K. V. Smit, T. Stachel, R. W. Luth, and R. A. Stern, “Evaluating mechanisms for eclogitic diamond growth: An example from Zimmi Neoproterozoic diamonds (West African craton),” Chem. Geol. 520, 21–32 (2019).

    Article  Google Scholar 

  87. C. B. Smith, M. J. Walter, G. P. Bulanova, S. Mikhail, A. D. Burnham, L. Gobbo, and S. C. Kohn, “Diamonds from Dachine, French Guiana: a unique record of early Proterozoic subduction,” Lithos 265, 82–95 (2016).

    Article  Google Scholar 

  88. T. Stachel and R. W. Luth, “Diamond formation – Where, when and how?,” Lithos 220–223, 200–220 (2015).

    Article  Google Scholar 

  89. V. Stagno and D. J. Frost, “Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages,” Earth Planet. Sci. Lett. 300, 72–84 (2010).

    Article  Google Scholar 

  90. V. Stagno, D. J. Frost, C. A. McCammon, H. Mohseni, and Y. Fei, “The oxygen fugacity at which graphite or diamond forms from carbonate–bearing melts in eclogitic rocks,” Contrib. Mineral. Petrol. 169, 16 (2015).

    Article  Google Scholar 

  91. H. Staudigel, S. R. Hart, H. -U. Schmincke, and B. M. Smith, “Cretaceous ocean crust at DSDP Sites 417 and 418: Carbon uptake from weathering versus loss by magmatic outgassing,” Geochim. Cosmochim. Acta. 53, 3091–3094 (1989).

    Article  Google Scholar 

  92. C. Sun and R. Dasgupta, “Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle,” Earth Planet. Sci. Lett. 506, 38–52 (2019).

    Article  Google Scholar 

  93. E. M. Syracuse, van Keken P. E., and G. A. Abers, “The global range of subduction zone thermal models,” Phys. Earth. Planet. Int. 183, 73–90 (2010).

    Article  Google Scholar 

  94. R. Tappert, T. Stachel, J. W. Harris, K. Muehlenbachs, T. Ludwig, and G. P. Brey, “Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle,” Contrib. Mineral. Petrol. 150, 505–522 (2005).

    Article  Google Scholar 

  95. S. Timmerman, M. Honda, X. Zhang, A. L. Jaques, G. Bulanova, C. B. Smith, and A. D. Burnham, “Contrasting noble gas compositions of peridotitic and eclogitic monocrystalline diamonds from the Argyle lamproite, Western Australia,” Lithos 344–345, 193–206 (2019).

    Article  Google Scholar 

  96. L. Uenver-Thiele, A. B. Woodland, H. Downes, and R. Altherr, “Oxidation state of the lithospheric mantle below the Massif Central, France,” J. Petrol. 55, 2457–2479 (2014).

    Article  Google Scholar 

  97. L. Uenver-Thiele, A. B. Woodland, H.-M. Seitz, H. Downes, and R. Altherr, “Metasomatic processes revealed by trace element and redox signatures of the lithospheric mantle beneath the Massif Central, France,” J. Petrol. 58, 395–422 (2017).

    Article  Google Scholar 

  98. Seckendorff V. von and H. St.C. O’Neill, “An experimental study of Fe–Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa,” Contrib. Mineral. Petrol. 113, 196–207 (1993).

    Article  Google Scholar 

  99. E. B. Watson, “Diffusion in fluid-bearing and slightly–melted rocks: experimental and numerical approaches illustrated by iron transport in dunite,” Contrib. Mineral. Petrol. 107, 417–434 (1991).

    Article  Google Scholar 

  100. N. M. Wiser and B. J. Wood, “Experimental determination of activities in Fe–Mg olivine at 1400 K,” Contrib. Mineral. Petrol. 108, 146–153 (1991).

    Article  Google Scholar 

  101. B. J. Wood, L. T. Bryndzia, and K. E. Johnson, “Mantle oxidation state and its relationship to tectonic environment and fluid speciation,” Science 248, 337–345 (1990).

    Article  Google Scholar 

  102. A. B. Woodland, V. K. Bulatov, G. P. Brey, A. V. Girnis, H. E. Höfer, and A. Gerdes, “Subduction factory in an ampoule: Experiments on sediment–peridotite interaction under temperature gradient conditions,” Geochim. Cosmochim. Acta 223, 319–349 (2018).

    Article  Google Scholar 

  103. G. M. Yaxley and D. H. Green, “Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime,” Earth Planet. Sci. Lett. 128, 313–325 (1994).

    Article  Google Scholar 

  104. G. M. Yaxley, A. J. Berry, A. Rosenthal, A. B. Woodland, and D. Paterson, “Redox preconditioning deep cratonic lithosphere for kimberlite genesis – evidence from the central Slave Craton,” Nature Sci. Rep. 7, 30 (2017).

    Google Scholar 

  105. J. Zhang, B. Li, W. Utsumi, and R. C. Liebermann, “In situ X–ray observations of the coesite–stishovite transition: reversed phase boundary and kinetics,” Phys. Chem. Miner. 23, 1–10 (1996).

    Article  Google Scholar 

  106. L. Zhang, D. J. Ellis, S. Williams, and W. Jiang, “Ultra–high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite,” Am. Mineral. 87, 861–866 (2002).

    Article  Google Scholar 

  107. Y. Zhang and H. Ni, “Diffusion of H, C, and O components in silicate melts,” Rev. Mineral. Geoch. 72, 171–255 (2010).

  108. Z. Zhang and Y. Fedortchouk, “Records of mantle metasomatism in the morphology of diamonds from the Slave craton,” Eur. J. Mineral. 24, 619–632 (2012).

    Article  Google Scholar 

  109. S. Zhao, E. Schettino, M. Merlini, and S. Poli, “The stability and melting of aragonite: An experimental and thermodynamic model for carbonated eclogites in the mantle,” Lithos 324–325, 105–114 (2019).

    Article  Google Scholar 

  110. F. Zhu, J. Li, J. Liu, X. Lai, B. Chen, and Y. Meng, “Kinetic control on the depth distribution of superdeep diamonds,” Geophys. Res. Lett. 46, 1984–1992 (2019).

    Article  Google Scholar 

  111. J. Zhu, L. Zhang, R. Tao, and Y. Fei, “The formation of graphite-rich eclogite vein in S.W. Tianshan (China) and its implication for deep carbon cycling in subduction zone,” Chem. Geol. 533, 119430 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Thomas Kautz for help with conducting the experiments. A.L. Perchuk (Moscow State University) and O.G. Safonov (Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences) are thanked for careful analysis of the manuscript and valuable comments and suggestions.

Funding

This study was supported by the Deutsche Forschungsgemeinschaft and was carried out under government-financed research projects for the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Girnis.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girnis, A.V., Woodland, A.B., Bulatov, V.K. et al. Redox Freezing and Melting during Peridotite Interaction with Carbonated Metasediments and Metabasics: Experiments at 10 GPa. Geochem. Int. 60, 609–625 (2022). https://doi.org/10.1134/S0016702922070035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922070035

Keywords:

Navigation