Skip to main content
Log in

Molybdenum Isotopes Behavior in the Dolomite-Terra Rossa Weathering System

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The assumption that the composition of continental input can be characterized from crustal rock types is the prerequisite for the application of the molybdenum (Mo) isotopic composition as an agent to determine variations in the redox state of the paleo-oceans. The Mo isotopes’ behavior in the weathered profile of basalt and granite had been studied in pervious works (Pearce et al., 2010, Voegelin et al., 2012 and Wang et al., 2018). However, the Mo isotopes’ behavior in the weathered profile of carbonate rock is unknown. In this work, the Mo concentration and Mo isotopic composition in a weathered profile from Guizhou province, China, are investigated for the first time to understand the behavior of Mo isotopes during carbonate rock chemical weathering. The profile is developed on Early Triassic dolomite. According to the field observation and element ratios, the weathered profile is divided into intensely weathered zone (IWZ), weekly weathered zone (WWZ) and fresh bedrock. The clear correlation between Hf and Zr concentration suggests that the dolomite is the parental material for the terra rossa. The τMo of weather soil ranging from ‒1.37 to –0.14 indicates the significant loose of Mo. The δ98Mo of the soil varies from –0.66 to 0.12‰, markedly lighter than the fresh bedrocks (1.82 to 1.97‰). The difference between soils and fresh bedrocks in δ98Mo suggests that Mo isotopes are fractionated during carbonate rock chemical weathering and heavy Mo isotopes are preferentially released, similar to the weathered profile of basalt and granite. According to the coupling relationship between Mo/Al2O3 and δ98Mo, the weathered model of dolomite was established: (1) the carbonate component is firstly dissolved, releasing most Mo with heavy Mo isotope composition. (2) The detrital component then is weathered to form secondary minerals, which adsorb the Mo from weathering fluid. Thus, the Mo/Al2O3 and δ98Mo of samples from IWZ are greater than that of WWZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. D. Anbar, “Molybdenum stable isotopes: observations, interpretations, and directions,” In Geochemistry of Non-Traditional Stable Isotopes, Rev. Mineral. Geochem. 55 (1), 429–454 (2004).

  2. C. Archer and D. Vance, “The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans,” Nat. Geosci. 1, 597–600 (2008).

    Article  Google Scholar 

  3. G. Arnold, A. Anbar, J. Barling, and T. Lyons, “Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans,” Science 304, 87–90 (2004).

    Article  Google Scholar 

  4. D. Asael, F. L. Tissot, C. T. Reinhard, O. Rouxel, N. Dauphas, T. W. Lyons, E. Ponzevera, C. Liorzou, and S. Cheron, “Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event,” Chem. Geol. 362,193–210 (2013).

    Article  Google Scholar 

  5. D. Colodner, J. Edmond, and E. Boyle, “Rhenium in the Black Sea: comparison with molybdenum and uranium,” Geochim. Cosmochim. Acta, 131, 1–15 (1995).

    Google Scholar 

  6. A. J. Dickson, “A molybdenum-isotope perspective on Phanerozoic deoxygenation events,” Nature Geosci. 10, 721–726 (2017).

    Article  Google Scholar 

  7. G. Faure, Principles of Isotope Geology, 2nd Ed. (John Wiley & Sons, New York, 1986).

    Google Scholar 

  8. J.-L. Feng, “Behavior of rare earth elements and yttrium in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa over dolomite during chemical weathering,” Chem. Geol. 271, 112–132 (2010).

    Article  Google Scholar 

  9. J.-L. Feng, “Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa overlying dolomite: their mobilization, redistribution and fractionation,” J. Geochem. Explor. 108, 99–111 (2011).

    Article  Google Scholar 

  10. J.-L. Feng, L.-P. Zhu, and Z.-J. Cui, “Quartz features constrain the origin of terra rossa over dolomite on the Yunnan–Guizhou Plateau,” China. J. Asian Earth Sci. 36, 156–167 (2009).

    Article  Google Scholar 

  11. J.-L. Feng, L.-L. Pei, X. Zhu, J.-T. Ju, and S.-P. Gao, “Absolute accumulation and isotope fractionation of Si and Fe during dolomite weathering and terra rossa formation,” Chem. Geol. 496, 43–56, (2019).

    Article  Google Scholar 

  12. T. Goldberg, C. Archer, D. Vance, and S. W. Poulton, “Mo isotope fractionation during adsorption to Fe (oxyhydr) oxides,” Geochim Cosmochim Acta 73, 6502–6516 (2009).

    Article  Google Scholar 

  13. T. Goldberg, S. W. Poulton, T. Wagner, S. F. Kolonic, and M. Rehkämper, “Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2,” Earth Planet. Sci. Lett. 440, 81–91(2016).

    Article  Google Scholar 

  14. A. T. Greaney, R. L. Rudnick, S. J. Romaniello, A. C. Johnson, R. M. Gaschnig, and A. D. Anbar, “Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust,” Earth Planet. Sci. Lett. 534, 116083, (2020).

    Article  Google Scholar 

  15. J. Li, X. R. Liang, L. F. Zhong, X. C. Wang, Z. Y. Ren, S. L. Sun, Z. F. Zhang, and J. F. Xu, “Measurement of the isotopic composition of molybdenum in geological samples by MC-ICP-MS using a novel chromatographic extraction technique,” Geostand. Geoanal. Res. 38, 345–354 (2014).

    Article  Google Scholar 

  16. X. Lu, T. W. Dahl, W. Zheng, S. Wang, and B. Kendall, “Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks,” Geochim. Cosmochim. Acta 290, 76–103 (2020).

    Article  Google Scholar 

  17. D. Malinovsky, D. Hammarlund, B. Ilyashuk, O. Martinsson, and J. Gelting, “Variations in the isotopic composition of molybdenum in freshwater lake systems,” Chem. Geol. 236, 181–198 (2007).

    Article  Google Scholar 

  18. D. S. Manta, M. Angelone, A. Bellanca, R. Neri, and M. Sprovieri, “Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy,” Sci. Total Environ. 300, 229–243 (2002).

    Article  Google Scholar 

  19. J. L. Morford and S. Emerson, “The geochemistry of redox sensitive trace metals in sediments,” Geochim. Cosmochim. Acta 63, 11–12(1999).

    Article  Google Scholar 

  20. D. R. Muhs and J. R. Budahn, “Geochemical evidence for African dust and volcanic ash inputs to terra rossa soils on carbonate reef terraces northern Jamaica West Indies,” Quat. Int. 196, 13–35 (2009).

    Article  Google Scholar 

  21. D. R. Muhs, J. Budahn, G. Skipp, J. M. Prospero, D. Patterson, and E. A. Bettis III, “Geochemical and mineralogical evidence for Sahara and Sahel dust additions to Quaternary soils on Lanzarote, eastern Canary Islands, Spain,” Terra Nova 22, 399–410 (2010).

    Article  Google Scholar 

  22. H. W. Nesbitt, “Mobility and fractionation of rare earth elements during weathering of a granodiorite,” Nature 279, 206–210 (1979).

    Article  Google Scholar 

  23. N. Neubert, A. Heri, A. R. Voegelin, T. F. Nagler, F. Schlunegger, and I. M. Villa, “The molybdenum isotopic composition in river water: constraints from small catchments,” Earth Planet Sci. Lett. 304, 180–190 (2011).

    Article  Google Scholar 

  24. E. M. O’Sullivan, T. F. Nagler, and M. G. Babechuk, “Unusually heavy stable Mo isotope signatures of the Ottawa River: Causes and implications for global riverine Mo fluxes,” Chem. Geol. 568, 120039 (2021).

    Article  Google Scholar 

  25. C. R. Pearce, K. W. Burton, P. A. E. P. von Strandmann, R. H. James, and S. R. Gíslason, “Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain,” Earth Planet. Sci. Lett. 295, 104–114 (2010).

    Article  Google Scholar 

  26. R. L. Poulson, C. Siebert, J. McManus, and W. M. Berelson, “Authigenic molybdenum isotope signatures in marine sediments,” Geology 34 (8), 617–620 (2006).

    Article  Google Scholar 

  27. L. Qi, J. Hu, and D. C. Gregoire, “Determination of trace elements in granites by inductively coupled plasma mass spectrometry,” Talanta 51, 507–513 (2000).

    Article  Google Scholar 

  28. R. L. Rudnick and S. Gao, Composition of the Continental Crust, 2nd Ed. (Elsevier Ltd, 2013).

    Google Scholar 

  29. A. R. Voegelin, T. F. Nägler, T. Pettke, N. Neubert, M. Steinmann, O. Pourret, and I. M. Villa, “The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments,” Geochim. Cosmochim. Acta 86,150–165 (2012).

    Article  Google Scholar 

  30. Z. Wang, Z. Ma, G. Wei, T. Zeng, L. Li, L. Zhang, W. Deng, L. Xie, and Z. Liu, “Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite,” Geochim. Cosmochim. Acta 226, 1–17 (2018).

    Article  Google Scholar 

  31. K. H. Wedepohl, “The composition of the continental crust,” Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Article  Google Scholar 

  32. M. Wille, O. Nebel, M. J. Van Kranendonk, R. Schoenberg, I. C. Kleinhanns, and M. J. Ellwood, “Mo–Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, Western Australia,” Chem. Geol. 340, 68–76 (2013).

    Article  Google Scholar 

  33. N. Xu, W. Braida, C. Christodoulatos, and J. P. Chen, “A review of molybdenum adsorption in soils/bed sediments: speciation, mechanism, and model applications,” Soil Sediment. Contam. 22, 912–929 (2013).

    Article  Google Scholar 

  34. S. Yamasaki, A. Takeda, K. Nunohara, and N. Tsuchiya, “Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials,” Soil Sci. Plant Nutr. 59, 692–699 (2013).

    Article  Google Scholar 

  35. P.-P. Zhao, J. Li, L. Zhang, Z.-B. Wang, D.-X. Kong, J.‑L. Ma, G.-J. Wei, and J.-F. Xu, “Molybdenum mass fractions and isotopic compositions of international geological reference materials,” Geostand. Geoanal. Res. 40, 217–226 (2015).

    Article  Google Scholar 

  36. Q. Zhu, C. Yin, L. Tang, and J. Xu, “Content and distribution of trace elements in limestone soils of China,” Acta Pedol. Sin. 21, 58–69 (1984) [In Chinese with English abstract].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is supported by the National Natural Science Foundation of China (NSFC; grants no. 41602343). We thank Jie Zhao (Guangzhou Institute of Geochemistry, Chinese Academy of Sciences) for his help with the sequential extraction procedure and analyses. The authors thank an anonymous reviewer and editor Alexei Buikin for their insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Guo.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi Xiao, Xu, S., Guo, T. et al. Molybdenum Isotopes Behavior in the Dolomite-Terra Rossa Weathering System. Geochem. Int. 60, 589–595 (2022). https://doi.org/10.1134/S0016702922060106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922060106

Keywords:

Navigation