Skip to main content
Log in

Spatial Distribution of Water Composition of the Swamp Massif within the Kuchiger Discharge Area of Hydrothermal Waters

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Electric conductivity and the activities of the Na+, Ca2+, Cl, and F ions were determined in the thermal spring waters, the surface waters of the Kuchiger swamp massif, the waters accumulated on the soil surface after heavy rains in the concave topographic elements of the alluvial plains, the waters of a streamlet that originates in the Barguzin Range, the waters of the Indikhan River, and the groundwaters. Indicator parameters of different water types were determined to significantly vary within Ulyunkhan depression. Narrow ranges were determined for the variations in the composition of the hot springs and wide ones were found in the composition of the warm and cold springs. Statistical distributions of the measured parameters of the swamp waters were shifted toward higher values compared to those of the discharged thermal waters. The following three features of the spatial distribution of water composition indicators have been identified: (1) a spotty character, (2) a trend in the water composition in the direction of transit according to the general slope of the terrain, and (3) a trend of increasing salt content in the waters near the outer shoreline of the swamp massif and around islands within it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Acid Sulphate Soils. Proceedings of the International Symposium on Acid Sulphate Soils, Wageningen, The Netherlands, 1972, (Wageningen, 1973), Vol. 45, 295.

  2. Agrochemical Methods of Soil Study (Nauka, Moscow, 1975) [in Russian].

  3. G. G. Akhmanov, O. M. Khlystov, M. A. Solovyeva, V. N. Efremov, O. N. Vidishcheva, A. Mazzini, A. A. Kudaev, I. A. Bulanova, A. A. Barymova, E. K. Gordeev, M. T. Delengov, E. D. Egoshina, Ya. V. Sorokoumova and P. O. Ponimaskin, “Newly discovered hydrate-bearing structure in Lake Baikal,” 73 (6), 582–587 (2018).

  4. E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Mosk. Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  5. D. C. Armstrong, “Acid sulphate alteration in a magmatic hydrothermal environment, Barton Peninsula, King George Island, Antarctica,” Minera. Mag. 59, 429–441 (1995).

    Article  Google Scholar 

  6. L. N. Barabanov, and V. N. Disler, Nitrogen Thermal Waters of the USSR (Geominvod, Moscow, 1968) [in Russian].

    Google Scholar 

  7. E. A. Baskov and S. N. Surikov, Hydrothermal Waters of the Earth (Nedra, Leningrad, 1989) [in Russian].

    Google Scholar 

  8. J. G. Bockheim and T. M. Ballard, “Hydrothermal soils of the crater of Mt. Baker,” Soil Sci. Soc. Am. Proc. 39, 997–1001 (1975).

    Article  Google Scholar 

  9. I. V. Bragin, G. A. Chelnokov, and O. V. Chudaev, “Geochemistry of thermal waters of continental margin of far east of Russia,” Acta Geol. Sinica 90 (1), 276–284 (2016).

    Article  Google Scholar 

  10. B. Burns, “Vegetation change along a geothermal stress gradient at the Te Kopia steamfield,” R. Soc. New Zealand 27, 279–293 (1997).

    Article  Google Scholar 

  11. S. Byrdina, H. Grandis, P. Sumintadireja, C. Caudron, D. K. Syahbana, E. Naffrechoux, H. Gunawan, G. Suantika, and J. Vandemeulebrouck, “Structure of the acid hydrothermal system of Papandayan volcano, Indonesia, investigated by geophysical methods,” Volcanol. Geotherm. Res. 358, 77–86 (2018).

    Article  Google Scholar 

  12. G. Chelnokov, I. Bragin, N. Kharitonova, and B. Chelnokova, “Hydrochemistry of low-temperature thermal water of Primorye region (Russia) and environmental implications,” Water Res. Hydraulic Engineering 3, 95–98 (2015).

    Google Scholar 

  13. M. K. Chernyavsky, Extended Abstract of Candidate’s Dissertation in Geography (Uland-Ude, 2006) [in Russian].

  14. M. K. Chernyavsky, A. M. Plyusnin, S. G. Doroshkevich, and R. Ts. Budaev, “Recreational–balneological features of northeastern Barguzin basin,” Geograf. Prir. Res., No. 2, 63–72 (2018).

  15. D. Cross, “Soils and geology of some hydrothermal eruptions in the Waiotapu District,” New Zealand J. Geol. Geophys. 6, 70–87 (1963).

    Article  Google Scholar 

  16. M. De Batist, J. Klerkx, P. Van Rensbergen, M. Vanneste, J. Poort, A. Golmshtok, A. Kremlev, O. Khlystov, and P. Krinitsky, “Active hydrate destabilisation in Lake Baikal, Siberia?” Terra Nova 14 (6), 436–442 (2002).

    Article  Google Scholar 

  17. E. A. Dmitriev, Mathematical Statistics in Soil Science (MGU, Moscow, 1995) [in Russian].

    Google Scholar 

  18. A. A. Dzyuba, N. V. Kulagina, T. I. Abidueva, and A. L. Chernykh, “Mineral lakes of the Barguzin–Chivyrkui Isthmus,” Geograf. Prir. Res., no. 2, 61–67 (2002).

  19. A. J. Ellis, “Explored geothermal systems,” Geochemistry of Hydrothermal Ore Deposits, Ed. by H. L. Barnes, 2nd Ed. (Holt, Rhinehart, and Winston, New York, 1979), pp. 632–683.

  20. Field Guide of Russian Soils (Pochv. Inst. Im. Dokuchaeva, Moscow, 2008) [in Russian].

  21. Functioning of Subarctic Hydrothermal Ecosystems in Winter, Ed. by K. G. Bogolitsyna and I. N. Bolotova, (UrO RAS, Yelaterinburg, 2011) [in Russian].

  22. A. N. Gennadiev, A. R. Geptner, A. P. Zhidkin, S. S. Chernyanskii, and Yu. I. Pikovskii, “Exothermic and endothermic soils of Iceland,” Euras. Soil Sci. 40 (6), 595–607 (2007).

    Google Scholar 

  23. I. L. Gol’dfarb, “Effect of hydrothermal activity on the conditions of pedogenesis and soil morphology (by the example of Kamchatka),” Euras. Soil Sci. 29 (12), 1319–1324 (1996).

    Google Scholar 

  24. I. L. Gol’dfarb, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2005) [in Russian].

  25. Guidelines for Soil Description, 4th edition (FAO, Rome, 2006).

  26. M. Gwynn, R. Allis, C. Hardwick, J. Hill, and J. Moore, “A new look at the thermal regime around Roosevelt hot springs, Utah,” GRC Transactions 40, 551–558 (2016).

    Google Scholar 

  27. C. Helvachi, “Hydrogeochemical and hydrogeological integration of thermal waters in the Emet area (Kutahya, Turkey),” Appl. Geochem 1, 105–118 (2004).

    Google Scholar 

  28. V. P. Isaev, Natural Gases of the Barguzin Basin (Irkutsk. Univ., Irkutsk, 2006) [in Russian].

    Google Scholar 

  29. V. P. Isaev, Petroleum Prospects of Intermontane Basins of Buryatia (GEO, Novosibirsk, 2016) [in Russian].

  30. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports (FAO, Rome, 2015), No. 106.

  31. G. V. Kalmychkov, A. V. Egorov, M. I. Kuzmin, and O. M. Khlystov, “Genetic types of methane from Lake Baikal,” Dokl. Earth Sci. 411, 1462–1465 (2006b).

    Article  Google Scholar 

  32. N. S. Kasimov, Landscape Geochemistry of Fault Zones: Evidence from Kazakhstan (MOsk. Univ., Moscow, 1980) [in Russian].

  33. N. B. Khitrov, V. L. Ubugunov, V. I. Ubugunova, Yu. A. Rupyshev, T. A. Ayushina, A. D. Zhambalova, E. G. Tsyrempilov, A. E. Paramonova, and Ts. N. Nasatueva, “Morphology of soils in the impact zone of Kuchiger hot springs, the Barguzin Depression,” Euras. Soil Sci. 52 (12), 1477–1498 (2019).

    Google Scholar 

  34. O. M. Khlystov, M. De Batist, H. Shoji, A. Hachikubo, S. Nishio, and L. Naudts, “Gas hydrate of Lake Baikal: Discovery and varieties,” Asian Earth Sci. 62, 162–166 (2013).

    Article  Google Scholar 

  35. E. A. Kleshcheva, “Indication features of plants from southern Siberia relative to the moisture factor,” Ekologiya, No. 6, 425–431 (2010).

    Google Scholar 

  36. A. E. Kontorovich, V. A. Kashirtsev, V. I. Moskvin, L. M. Burshtein, T. I. Zemskaya, E. A. Kostyreva, G. V. Kalmychkov, and O. M. Khlystov, “Petroleum potential of Baikal deposits,” Russ. Geol. Geophys. 48 (12), 1046–1052 (2007).

    Article  Google Scholar 

  37. E. A. Kornblyum, I. S. Mikhailov, N. A. Nogina, and V. O. Targul’yan, Base Scales of Properties of Soil Morphological Properties (Pochv. Inst. Im. Dokuchaeva, Moscow, 1982) [in Russian].

    Google Scholar 

  38. D. N. Kostyuk and A. N. Gennadiev, “Soils and the soil cover of the valley of geysers,” Euras. Soil Sci. 47 (6), 529–539 (2014).

    Google Scholar 

  39. M. I. Kuz’min, G. V. Kalmychkov, V. F. Geletii, V. A. Gnilusha, A. V. Goreglyad, B. N. Khakhaev, L. A. Pevzner, T. Kawai, N. Yoshida, A. D. Duchkov, V. A. Ponomarchuk, A. E. Kontorovich, N. M. Bazhin, G. A. Makhov, Yu. A. Dyadin, F. A. Kuznetsov, E. G. Larionov, A. Yu. Manakov, B. S. Smolyakov, M. M. Mandel’baum, and N. K. Zheleznyakov, “The first find of gas-hydrates in the sedimentary rocks of Lake Baikal,” Dokl. Earth Sci. 362 (7), 1029–1031 (1998).

    Google Scholar 

  40. E. F. Lloyd, “The hot springs and hydrothermal eruptions of Waiotapu,” New Zealand J. Geol. Geophys. 2, 141–176 (1959).

    Article  Google Scholar 

  41. N. A. Logachev, “History and geodynamics of the Baikal Rift,” Russ. Geol. Geophys. 44 (5), 373–387 (2003).

    Google Scholar 

  42. I. S. Lomonosov, Geochemistry and Formation of Modern Hydrothermal Waters of the Baikal Rift Zone (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  43. O. V. Lunina, A. S. Gladkov, and N. N. Nevedrova, Rift Basins of the Baikal Region: Tectonic Structure and Evolution (GEO, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  44. S. V. Lysak, “Terrestrial heat flow in zones of active faults in southern East Siberia,” Russ. Geol. Geophys. 43 (8), 791–803 (2002).

    Google Scholar 

  45. S. V. Lysak, Heat flow of Continental Rift Zones (Nauka, Novosibirsk, 1988) [in Russian].

  46. L. I. Malyshev, Features and Genesis of Siberian Flora (Cis- and Transbaikalia) (Nauka, Novosibirsk, 1984) [in Russian].

  47. K. Maussen, E. Villacorte, R. R. Rebadulla, R. P. Maximo, V. Debaille, Ma. A. Bornas, and A. Bernard, “Geochemical characterization of Taal volcano-hydrothermal system and temporal evolution during continued phases of unrest (1991–2017),” Volcanol. Geotherm. Res. 352, 38–54 (2018).

    Article  Google Scholar 

  48. Methods of Study of Forest Communities (NIIKhimii St. Petersburg. Gos. Univ., St. Petersburg, 2002) [in Russian].

  49. B. B. Naidanov, N. K. Badmaeva, O. A. Anenkhonov, and T. D. Pykhalova, “Halophytic vegetation of Western Transbaikalia: flora and syntaxonomy,” Rast. Mir aziatsk. Rossii 2 (6). 66–72 (2010).

    Google Scholar 

  50. B. B. Namsaraev, D. D. Barkhutova, E. V. Danilova, A. V. Bryanskaya, S. P. Butyukhaev, E. Zh. Garmaev, V. M. Gorlenko, O. P. Dagurova, V. B. Dambaev, S. V. Zaitseva, L. V. Zamana, V. V. Khakhinov, and A. V. Tatarinov, Geochemical Activity of Microorganisms of the Baikal Rift Zone (GEO, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  51. C. M. U. Neale, C. Jaworowski, H. Heasler, S. Sivarajan, and A. Masih, “Hydrothermal monitoring in Yellowstone National Park using airborne thermal infrared remote sensing,” Remote Sensing Environ. 184, 628–644 (2016).

    Article  Google Scholar 

  52. O. M. Khlystov, “New findings of gas hydrates in the Baikal bottom sediments,” Russ. Geol. Geophys. 47 (8), 972–971 (2006).

    Google Scholar 

  53. O. M. Khlystov, H. Minami, A. Hachikubo, S. Yamashita, M. De Batist, L. Nauds, A. V. Khabuev, A. G. Chenskiy, N. A. Gubin, and S. S. Vorobyeva, “Age of mud breccia from mud volcanoes in Academician Ridge, Lake Baikal,” Geodynam. Tectonophys. 8 (4), 923–932 (2017).

    Article  Google Scholar 

  54. N. V. Pimenov, G. V. Kalmychkov, M. B. Veryasov, and P. A. Sigalevich, “Microbial oxidation of methane in the sediments of central and southern Baikal,” Microbiology 83 (6), 773–781 (2014).

    Article  Google Scholar 

  55. A. M. Plyusnin, “Mineral and thermal waters of the Baikal rift zone: geological conditions of formation, chemical and isotope composition,” Geological Evolution of Water–Rock Interaction. Proc. 2 nd Conf. with International Participation, Vladivostok, Russia, 2015 (Dal’nauka, Vladivostok, 2015), pp. 83–90 [in Russian].

  56. A. M. Plyusnin, L. V. Zamana, S. L. Shvartsev, O. G. Tokarenko, and M. K. Chernyavskii, “Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone,” Russ. Geol. Geophys. 54 (5), 495–508 (2013).

    Article  Google Scholar 

  57. V. N. Razumova, Ancient Weathering Crusts and Hydrothermal Process (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  58. A. W. Rodman, H. F. Shovic, and D. Thoma, Soils of Yellowstone National Park (Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 1996).

  59. T. Yu. Samkova, S. A. Rylova, and E. S. Klyapitskii, Spatial heterogeneity of thermal field and its reflection in the vegetation cover of the southeastern site of the Bolshoi Banny deposit (Southern Kamchatka), Vestn. KRAUNts. Nauki Zemle 3 (31), 18–27 (2016).

    Google Scholar 

  60. R. Schoen, D. E. White, and J. J. Hemley, “Argillization by descending acid at Steamboat Springs, Nevada,” Clays Clay Miner. 22, 1–22 (1974).

    Article  Google Scholar 

  61. I. N. Semenkov, A. V. Zavadskaya, V. V. Krupskaya, S. V. Zakusin, G. V.Klink, and D. M. Panicheva, “Transformation of soil and vegetation cover in the discharge sites of hydrothermal waters of the Geizernaya River valley (Kronotsky State Reserve), Soil Science: Future Horizons. Proc. First Open Conference of Youth Scientists Dedicated to the 90 th Anniversary of the Institute, Ed. by D. N. Kozlov (Pochv. Inst. Im. V.V. Dokuchaeva, 2017), pp. 24–28 [in Russian].

  62. I. G. Serebryakov, Ecological Morphology of Plants. Life Forms of Angiosperms and Coniferous (Vysshaya Shkola, Moscow, 1962) [in Russian].

    Google Scholar 

  63. I. G. Serebryakov, “Life forms of higher plants and their study,” Polevaya Geobotan. 3, 146–205 (1964).

    Google Scholar 

  64. Yu. R. Shelyat-Sosonko, “A sketch of flora and vegetation of the Yalta mountain–forest state reserve,” Botan. Zh. 63 (10), 1430–1439 (1978).

    Google Scholar 

  65. S. L. Shvartsev, Hydrogeochemistry of Supergene Zone (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  66. Soils of the Barguzin Depression (Nauka, Novosibirsk, 1983) [in Russian].

  67. S. L. Shvartsev, L. V. Zamana, A. M. Plyusnin, and O. G. Tokarenko, “Equilibrium of nitrogen-rich spring waters of the Baikal rift zone with host rock minerals as a basis for determining mechanisms of their formation,” Geochem. Int. 53 (8), 713–725 (2015).

    Article  Google Scholar 

  68. N. P. Solntseva, and I. L. Gol’dfarb, “Geochemical features of landscapes of the modern vapor-hydrothermal deposits of Kamchatka: evidence from the Pauzhetka Deposit,” Vestn. Mosk. Univ. Ser. 5 Geografiya, No. 2, 65–73 (1994).

    Google Scholar 

  69. R. Stoffregen, “Genesis of acid-sulfate alteration and Au–Cu–Ag mineralization at Summitville, Colorado,” Econ. Geol. 82, 1575–1591 (1987).

    Article  Google Scholar 

  70. A. V. Tatarinov, L. I. Yalovik and S. V. Kanakin, “The generation and mineral associations of rock assemblages at mud volcanoes: southeastern Siberia,” J. Volcanol. Seismol. 10 (4), 248–262 (2016).

    Article  Google Scholar 

  71. A. I. Tolmachev, Introduction in the Plant Geography (Leningad. Univ., Leningrad, 1974) [in Russian].

    Google Scholar 

  72. C. C. Trettin and L. J. Bartelli, “Characterization of soils in Yellowstone National Park,” University of Wyoming National Park Service Research Center Annual Report 6 (25), 133–136 (1982).

    Google Scholar 

  73. Yu. P. Troshin and I. S. Lomonosov, “Chemical composition and conditions of formation of modern hydrothermal waters in the central part of the Baikal rift zone,” Geograf. Prir. Resur., No. 2, 39–46 (2005).

  74. Yu. P. Troshin, I. S. Lomonosov, and N. N. Bryukhanova, “Conditions of formation of ore-geochemical specialization of modern hydrotherms in the Baikal Rift Zone,” Russ. Geol. Geophys. 49 (3), 169–175 (2008).

    Article  Google Scholar 

  75. V. L. Ubugunov, V. I. Ubugunova, N. P. Chizhikova, E. B. Varlamov, N. B. Khitrov, and A. D. Zhambalova, “Alkaline soils of the tectonic faults of the northern Barguzin basin (Buryatia, Russia),” Nature of Inner Asia 2 (3), 38–48 (2017).

    Google Scholar 

  76. V. L. Ubugunov, N. B. Khitrov, N. P. Chizhikova, V. I. Ubugunova, E. B. Varlamov, A. D. Zhambalova, and E. S. Chechetko, “Properties and mineralogical composition of the dark humic quasigleyed brackish alkaline cryoturbated permafrost soil of the Barguzin Basin (Buryatia),” Byull. Pochv. Inst. Im. V.V. Dokuchaeva, no. 91, 62–94 (2018).

  77. V. L. Ubugunov, N. B. Khitrov, V. I. Ubugunova, A. D. Zhambalova, Yu. A. Rupyshev, T. A. Atyshina, A. E. Paramonova, E. G. Tsyrempilov, and Ts. N. Nasatueva, “Endogenic factor and morphogenetic structure of soils in the influence zone of the Kuchiger hydrothermal waters (Baikal Rift Zone, northern Barguzin Basin), Nature of Inner Asia,” No. 4, 54–72 (2018).

  78. I. D. Ul’zetueva and V. V. Khakhinov, “Hydrochemical characteristic of mineral springs in southwestern Transbaikalia,” Water Res. 38 (5), 629–636 (2011).

    Article  Google Scholar 

  79. I. D. Ul’zetueva V. V. Khakhinov, V. S. Budaeva, and A. Yu. Vanzhilov, “Study of mineral springs of siliceous composition of the Barguzin valley,” Vestn. Buryatsk. Gos. Univ., No. 3, 70–72 (2015).

  80. P. Van Rensbergen, M. De Batist, J. Klerkx, R. Hus, J. Poort, M. Vanneste, N. Granin, O. Khlystov, and P. Krinitsky, “Sublacustrine mud volcanoes and methane seeps caused by dissociation of gas hydrates in Lake Baikal,” Geology 30 (7), 631–634 (2002).

    Article  Google Scholar 

  81. N. V. Vilor, L. D. Andrulajtis, O. V. Zarubina, and B. S. Danilov, “Geochemistry of seismoactive regional faults: Baikal Rift Zone, East Siberia,” Geochem. Int. 53 (1), 60–77 (2015).

    Article  Google Scholar 

  82. C. G. Vucetich and N. Wells, “Soils, agriculture, and forestry of Waiotapu Region, Central North Island, New Zealand (Guthrie, Waiotapu, Rerewhakaaitu, Atiamuri, Reporoa Districts),” New Zealand Soil Bureau Bull. 31, 100 (1978).

    Google Scholar 

  83. G. W. Wilson D. G. Fredlund, and S. L. Barbour, “The effect of soil suction on evaporative fluxes from soil surfaces,” Can. Geotechnical J. 34, 145–155 (1997).

    Article  Google Scholar 

  84. B. A. Yurtsev, Flora of Suntar-Khayat: Problems of History of Highland Landscapes of Northeastern Siberia (Nauka, Leningrad, 1968) [in Russian].

    Google Scholar 

  85. L. V. Zamana, Permafrost–hydrogeological and Meliorative Conditions of the Barguzin Basin (Nauka, Novosibirks, 1988) [in Russian].

  86. L. V. Zamana, “Fluoride waters of Transbaikalia,” Dokl. Akad. Nauk USSR 315 (5), 1230-1233 (1990).

    Google Scholar 

  87. L. V. Zamana, “Hydrogeochemical fluorine anomalies in Transbaikalia,” Geokhimiya, No. 2, 228–237 (1992).

    Google Scholar 

  88. L. V. Zamana, “Hydrochemistry of the Uta-Bulag mineral spring (Western Transbaikalia),” Voda: Khim. Ekol., no. 11, 3–9 (2014).

  89. L. V. Zamana and Sh. A. Askarov, “Mineral equilibria of nitrogen waters of the Bauntov Group and mineral formation in their cyanobacterial mats (Baikal rift zone),” Geological Evolution of Water–Rock Interaction. Proc. 3 rd All-Russian Conference with International Participation, Ed. by L. V. Zamana and S. L. Shvartsev (Buryat, Nauchn. Ts. Ross. Akad. Nauk, Ulan-Ude, 2018), pp. 406–410 [in Russian]. https://doi.org/10.31554/978-5-7925-0536-0-2018-406-410

  90. A. V. Zavadskaya, I. N. semenkov, V. V. Krupskaya, S. V. Zakusin, and D. M. Panicheva, “Transformation of soil and vegetation cover of thermal ecosystems under temperature influence: evidence from the Geizernaya River valley, Kronotsky Reserve,” Tr. Kronotsk. Gos. Prir. Zapoved. 5, 26–39 (2017).

    Google Scholar 

  91. A. D. Zhambalova, Extended Abstract of Candidate’s Dissertation in Biology (Ulan-Ude, 2018) [in Russian].

Download references

Funding

This study was carried out under government-financed research project AAAA–A17–117011810038–7 and was supported by the Russian Foundation for Basic Research, project no. 18-04-00454 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. B. Khitrov or V. L. Ubugunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B., Ubugunov, V.L., Ubugunova, V.I. et al. Spatial Distribution of Water Composition of the Swamp Massif within the Kuchiger Discharge Area of Hydrothermal Waters. Geochem. Int. 60, 575–588 (2022). https://doi.org/10.1134/S0016702922050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922050056

Keywords:

Navigation