Skip to main content
Log in

Biogeochemical Features of Holocene Sediments in Oligotrophic Bogs of the Baraba Forest Steppe

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents data on the geochemical processes of postsedimentation transformations of boggy deposits at early diagenesis and the redistribution of chemical elements, including biogenic ones, in the Holocene sections of peat bogs in the Baraba forest-steppe in southern West Siberia. The contents of Fe, Mn, Pb, Hg, Sb, Cd, Cu, and Zn were found out to increase in the upper layers of the peat, whereas the S, N, Ca, and Sr concentrations increase in the middle parts of the peat profiles. The distribution character of various physiological groups of microorganisms in the peat profiles of Ubinskoe and Sherstobitovo peatlands lead to the conclusion that the nitrogen and carbon cycles are more active than that of sulfur. The activity of microorganisms leads to a decrease in pH and Eh in the vertical sections of the peatlands. The high values of \({\text{N}}{{{\text{H}}}_{4}}^{ + }\), \({\text{NO}}_{3}^{ - }\), TOC, and the chemical oxygen demand in the bog waters of Ubinskoe and Sherstobitovo bogs indicate that active biochemical decomposition and oxidation of organic matter proceed in these bogs. According to their predominant ions, the waters of the bogs belong to the hydrocarbonate class of the calcium group and are characterized by elevated concentrations of Al, Fe, Cu, and Zn, which is caused by the acid composition of the waters. The low pH values of the bog waters and the oxidizing environment facilitated the development of goethite–hydrogoethite mineralization in the upper horizon of peat profiles. The formation of hematite and anhydrite in the middle parts of the peat profiles was probably caused by paleofires. The authigenic minerals formed in the process of early diagenesis are, first of all, pyrite and less often siderite, calcite, and kaolinite. Under reducing conditions, nanoparticles of native Ni and Ni–Cr intermetallic compounds can be formed, and amorphous silica can be deposited at the dissolution of aluminosilicate minerals from the upper peat horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alekin, O. A. Principles of Hydrochemistry (Gidrometeoizdat, Leningrad, 1970) [in Russian]/

    Google Scholar 

  2. Anderson H., Hepburn A. Variation of humic substances within peat profile, in: Peat and Water, Ed. by C. H. Fuchsman (Academic Press, New York, 1986), pp. 177–194.

    Google Scholar 

  3. V. S. Arkhipov and V. K. Bernatonis, “Calcium and iron distribution in the vertical profile of peat bogs of the taiga zone of Western Siberia,” Izv. Tomsk Politekhn. Univ. 323 (1), 173–178 (2013).

    Google Scholar 

  4. A. I. Bakhtin, A. N. Kol’chugin, and A. A. Eskin, “Geochemical features of precipitation and stability of calcium sulfates in nature,” Uchen. Zap. Kazan. Univ. Ser. Estestv. Nauki 154(4), 55–60 (2012).

    Google Scholar 

  5. V. A. Bobrov, Yu. I. Preis, and V. V. Budashkina, “Assessment of mineral flux from atmosphere based on trace-element composition of peat sediments of the Bakchar-1 oligotrophic bog (southern taiga of Western Siberia), Probl. Biogeokhim. Geokhim. Ekol. 22 (1), 20–29 (2013).

    Google Scholar 

  6. M. T. Boquete, J. A. Fernández, J. R. Aboal, and A. Carballeira, “Are terrestrial mosses good biomonitors of atmospheric deposition of Mn?,” Atmos. Environ. 45, 2704–2710 (2011).

    Article  Google Scholar 

  7. A. Borgmark, “Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis,” Holocene 15 (3), 387–395 (2005).

    Article  Google Scholar 

  8. Y. Duan and L. Ma “Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinhai-Tibet plateau, China),” Org. Geochem. 32, 1429–1442 (2001).

    Article  Google Scholar 

  9. T. T. Efremova, S. P. Efremov, K. P. Kutsenogii, A. A. Onuchin, and V. F. Peresedov, “Biogeochemistry of Fe, Mn, Cr, Ni, Co, Ti, V, Mo, Ta, W, and U in a low moor peat deposit of the Ob’–Tom’ interfluve,” Euras. Soil Sci. 36 (5), 501–510 (2003).

    Google Scholar 

  10. V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva, “Elemental analysis of organic compounds with the use of automated CHNS analyzers,” J. Analyt. Chem. 63 (11), 1094–1106 (2008).

    Article  Google Scholar 

  11. W. R. Fischer and U. Schwertmann “The formation of hematite from amorphous iron (III) hydroxide,” Clays Clay Mineral. 23, 33–37 (1975).

    Article  Google Scholar 

  12. V. M. Gavshin, V. A. Bobrov, F. V. Sukhorukov, V. V. Budashkina, and M. S. Melgunov, “Fractionation of chemical elements in the atmosphere of Western Siberia: evidence from an ombrotrophic peat bog,” Dokl. Earth Sci. 396 (6), 668–671 (2004).

    Google Scholar 

  13. E. Gorham and J. A. Janssens, “The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America,” Wetlands 25(2), 259–278 (2005).

    Article  Google Scholar 

  14. GOST R 57162-2016. Water. Determination of Element Content by Electrothermal Atomization Atomic Absorption spectrometry (Standartinform, Moscow, 2016) [in Russian].

  15. E. H. Helmer, N. R. Urban, and S. J. Eisenreich, “Aluminum geochemistry in peatland waters,” Biogeochemistry 9 (3), 247–276 (1990).

    Article  Google Scholar 

  16. H. Kempter, M. Krachlera, W. Shotyk, and C. Zaccone, “Major and trace elements in Sphagnum moss from four southern German bogs, and comparison with available moss monitoring data,” Ecological Indicators. 78, 19–25 (2017).

    Article  Google Scholar 

  17. V. V. Khakhinov, B. B. Namsaraev, G. S.-S. Dorzhieva, and S. P. Buryukhaev, “Hydrochemical and microbiological characteristics of bog ecosystems of isthmus of Svyatoi Nos Peninsula, Lake Baikal,” Geograf. Prir. Res. 4, 65–71 (2012).

    Google Scholar 

  18. L. B. Khazin, I. V. Khazina, S. K. Krivonogov, Ya. V. Kuzmin, A. A. Prokopenko, S. Yi, and G. S. Burr, “Holocene climate changes in southern West Siberia based on ostracod analysis,” Russ. Geol. Geophys. 57 (4), 574–585 (2016).

    Article  Google Scholar 

  19. N. A. Khotinskii, “Position of boundary between forest and steppe in Western Siberia in the Middle and Lake Holocene,” Pochvovedenie, No. 6 40–47 (1970).

    Google Scholar 

  20. H. Lambers, F. S. Chapin, and T. L. Pons, Plant Physiological Ecology Second Edition (Springer, 2008)

    Book  Google Scholar 

  21. G. A. Leonova, A. E. Mal’tsev, Zh. O. Badmaeva, A. S. Shavekin, M. V. Rubanov, and Yu. I. Preis, “Geoecological assessment of the degree of anthropogenic heavy-metal contamination of ecosystems of ombotrophic peat bogs of the forest steppe zone of Western Siberia, Ekol. Promyshl. Proizv. 2 (102), 64–73 (2018).

    Google Scholar 

  22. Y. H. Li, “Distribution patterns of the elements in the ocean: A synthesis,” Geochim. Cosmochim. Acta. 55, 3223–3240 (1991).

    Article  Google Scholar 

  23. K. I. Lukashev, V. A. Kovalev, A. L. Zhukhovitskaya, A. A. Khomich, and V. A. Generalova Geochemistry of the Lacustrine–Swampy Lithogenesis (Nauka Tekhnika, Minsk, 1971) [in Russian].

    Google Scholar 

  24. M. Malawskaand and B. Wilkomirski, “Geochemistry and geochemical differentiation on major elements in selected peat bog profiles (south-east of Poland),” Soil Sci. Plant Nutr. 50 (6), 925–930 (2004).

    Article  Google Scholar 

  25. M. S. Melgunov, K. A. Mesina, B. L. Sherbov, Yu. S. Vosel, I. S. Zhurkova, and D. Belyanin, “Radioactive elements in atmospheric precipitations of the Western Siberia, E3S Web of Conferences 98, 10003(2019).

  26. B. B. Namsaraev and T. I. Zemskaya, Microbiological Processes of Carbon Circulation in Bottom Sediments of Lake Baikal (Geo, SO RAN Fil., Novosibirsk, 2000) [in Russian].

  27. A. V. Naumov, N. P. Kosykh, E. K. Parshina, and S. Yu. Artymuk, “Ombotrophic bogs of the forest steppe zone, theii state, and monitoring,” Sibirsk. Ekol. Zh. 16 (2), 261–259 (2009).

    Google Scholar 

  28. L. A. Orlova and V. S. Volkova, Holocene of Baraby (Stratigraphy and Radiocarbon Chronology) (Nauka, Novosibirsk, 1990) [in Russian].

  29. A. I. Perelman, Geochemistry of Natural Waters (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  30. PND F 14.1:2.159–2000. Turbidometric Measurement of Mass Concentration of Sulfate-Ions of Natural and Waste Waters (FTSAO, Moscow, 2005) [in Russian].

  31. PND F 14.1:2.96–97. Argenometric Measurement of Mass Concentration of Chlorides in Samples of Natural and Purified Waste Waters (GOs. Kom. RF Okhr. Okruzh. Sr., Rostov-on-Don, 2004) [in Russian].

  32. Yu. I. Preis, “Detailed reconstruction of functional state of bog as a response on a change of continental climate of Holocene (middle taiga of Western Siberia),” Izv. Tomsk. Politekhn. Univ. 326 (2), 90–102 (2015).

    Google Scholar 

  33. RD 52.24.493–2006. Mass Concentration of Hydrocarbonates and Alkalinity of Surface Waters of Land and Terrestrial Waste Waters. Titration Method of Measurement (Gidrokhim. Inst., Rostov-on-Don, 2006) [in Russian].

  34. V. I. Rozhdestvina and A. P. Sorokin, “First finds of native palladium, platinum, gold, and silver in brown coals of the Erkovets Field (Upper Amur Region),” Russ. J. Pac. Geol. 4 (6), 483–484 (2010).

    Article  Google Scholar 

  35. O. G. Savichev “Distribution of inorganic pollutants over the depth of upper peat deposit,” Contemp. Probl. Ecol. 8 (1), 118–124 (2015).

    Article  Google Scholar 

  36. O. G. Savichev and A. V. Shmakov, “Vertical zoning and annual changes of chemical compositon of water of the Timiryazev Bog (Tomsk, Western Siberia),” Izv. Tomsk. Politekhn. Univ. 320 (1), 156–172 (2012).

    Google Scholar 

  37. O. G. Savichev N. G. Nalivaiko, M. A. Rudmin, and A. K. Mazurov, “Microbiological conditions of chemical elements by depth of peat sediments in the ecosystems of easter Vasyugan bog (Western Siberia),” Izv. Tomsk. Politekhn. Univ. 330 (9), 184–194 (2019).

    Google Scholar 

  38. W. Shotyk, A. K. Cheburkin, P. G. Appleby, A. Fankhauser, and J. D. Kramers, “Two thousand years of atmospheric arsenic, antimony and lead deposition in an ombrotrophic bog profile, Jura Mountains, Switzerland,” Earth Planet. Sci. Lett. 145, 1–7 (1966).

    Article  Google Scholar 

  39. W. Shotyk, D. Weiss, J. D. Kramers, R. Frei, A. K. Cheburkin, M. Gloor, and S. Reese, “Geochemistry of the peat bog at Etang de la Grue`re, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP,” Geochim. Cosmochim. Acta. 65 (14), 2337–2360 (2001).

    Article  Google Scholar 

  40. S. L. Shvartsev, O. V. Serebrennikova, M. A. Zdvizhkov, O. G. Savichev, and O. S. Naimushina, “Geochemistry of wetland waters from the Lower Tom Basin, southern Tomsk Oblast,” Geochem. Int. 50 (4), 367–380 (2012).

    Article  Google Scholar 

  41. V. I. Simonova, Atomic Absorption Measurement of Elements in Rocks and Minerals (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  42. M. R. Stanton, D. B. Yager, D. L. Fey, and W. G. Wright, “Formation and geochemical significance of iron bog deposits,” In Formation and Geochemical Significance of Iron Bog Deposits, Ed. by S. E. Church, P. Guerard, and S. E. Finger, U.S. Geol. Surv. Prof. Paper 1651, 689–720 (2007).

  43. P. Steinmann and W. Shotyk, “Geochemistry, mineralogy, and geochemical mass balance on major elements in two peat bog profiles (Jura Mountains, Switzerland),” Chem. Geol. 138, 25–53 (1997).

    Article  Google Scholar 

  44. V. A. Stepanova and I. I. Volkova, “Genetic features of the Nikolaev Riam in the forest steppe of Western Siberia,” Vestn. Tomsk. Gos. Univ. Biol. 40, 202–223 (2017).

    Google Scholar 

  45. V. A. Stepanova, O. S. Pokrovsky, J. Viers, N. P. Mironycheva-Tokareva, N. P. Kosykh, and E. K. Vishnyakova, “Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage,” Appl. Geochem. 53, 53–70 (2015).

    Article  Google Scholar 

  46. E. E. Veretennikova, “Content and distribution of chemical elements in peats from the south taiga subzone of Western Siberia,” Geograf. Prir. Res. 2, 89–95 (2013).

    Google Scholar 

  47. Ya. E. Yudovich and M. P. Ketris, Geochemical Indicators (Litological Geochemistry) (Geoprint, Syktyvkar, 2011) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. V.V. Ermakov and Dr. D.V. Moskovchenko for valuable comments and suggestions.

Funding

This study was supported by Russian Foundation for Basic Research, project nos. 17-45-540063 r_a and 19-05-00403 A and was carried out under government-financed research project for Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Leonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonova, G.A., Maltsev, A.E., Preis, Y.I. et al. Biogeochemical Features of Holocene Sediments in Oligotrophic Bogs of the Baraba Forest Steppe. Geochem. Int. 60, 183–202 (2022). https://doi.org/10.1134/S0016702922020069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702922020069

Keywords:

Navigation