Skip to main content
Log in

Depositional Basin, Diagenetic Conditions and Source of Miocene Evaporites in the Tuzluca Basin in Northeastern Anatolia, Turkey: Geochemical Evidence

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The study area is located in northeastern Anatolia and represents a thick sequence (with gypsum, halite, clay, carbonate and siliciclastics) in a Miocene intermontane basin. The purpose of this study is to determine the depositional basin conditions, diagenetic processes and parent brine of the Miocene evaporite deposits (salts and gypsums) in the basin, by using sedimentological properties and geochemical composition. Sedimentological parameters and high positive correlations between some major ion (Fe, Al, and P oxides) and trace element (Zn, Co, Ni, Mo, Ba, and Sr, etc.) concentrations reveal that Tuzluca evaporites accumulated in a shallow terrestrial environment (playa lake-mud flats) exposed to high salinity conditions (Al2O3-Sr/Ba) under the effects of tectonism, diagenesis processes (replacement, dissolution-recrystallization, etc.), intense wave and biological activity (Zn-Fe2O3-P2O5, Ba-Sr-Fe2O3, etc.). The 87Sr/86Sr, δ34S and δ18O results of the evaporite minerals also support the view that these evaporites may originate from non-marine water. Also, these values suggest that these may be derived from the dissolution and re-precipitation of ancient marine evaporites. The variable crystal sizes of the evaporites and low δ18O values indicate that the salinity and pH conditions in the environment changed from time to time. The high trace element values, positive Ce and Eu anomalies and low δ34S value reflect the important contribution of diagenetic and hydrothermal solutions to these evaporites. Some important positive correlations between major ions (Si, Al, Mg, and Ti, etc.), trace (Rb, Th, Pb, Zr, Hf, and Ni etc.) and rare earth elements (La, Ce, Er, etc.), the distribution pattern of REE normalized to MUQ and chondrite, and low δ18O values indicate terrigenous detritic input transported into the basin with the contribution of terrestrial waters (river, meteoric, etc.). Also, the presence of fine-grained clay minerals (kaolinite, illite and montmorillonite), which are determined by these relationships and X-Ray Diffractometer (XRD) reveal that the evaporites deposited in the basin were exposed to both humid and hot-dry climates under alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Abedini and A. Calagari, “Rare earth element geochemistry of the Upper Permian limestone: the Kanigorgeh mining district, NW Iran,” Turkish J Earth Sci. 24, 365–382 (2015).

    Google Scholar 

  2. A. Abedini, M. Rezaei Azizi and AA. Calagari, “Lanthanide tetrad efect in limestone: a tool to environment analysis of the Ruteh Formation, NW Iran,” Acta Geodyn Geomater. 15, 229–246 (2018c).

    Google Scholar 

  3. S. Adamia, G. Zakariadze, T. Chkhotua, N. Sadradze, N. Tsereteli, A. Chabukiani and A. Gventsadze, “Geology of the Caucasus: a review,” Turk. Jour. Earth Sci. 20, 489–544 (2011).

    Google Scholar 

  4. A. Aras, Kars-Tuzluca Kaya Tuzlası'nın Jeolojik Etüt ve Rezerv Raporu (MTA Rapor, Ankara, 1981).

    Google Scholar 

  5. M. Aref, O. Attiia, and A. Wali, “Facies and depositional environment of the Holocene evaporites in the Ras Shukeir area, gulf of Suez, Egypt.” Sediment. Geology 110, 123–145 (2007).

  6. T. Ayyıldız, B. Varol, Z. Karakaş and K. Sözeri, “Basic geochemical characteristics of lacustrine rocks in the Neogene Kağızman–Tuzluca Basin, Northeastern Turkey,” J. Pet. Expl. Pro. Tec. doi.org/ (2019).https://doi.org/10.1007/s13202-018-0512-x

  7. M. Babel, “Models for evaporites, selenite and gypsum microbialite deposition in ancient saline basins”, Acta Geol Pol. 54, 219–249 (2004).

  8. P. Baertschi, “Absolute 18O content of Standard Mean Ocean Water,” Eart. Planet. Sci. Let. 31, 341 (1976).

    Google Scholar 

  9. J. L. Banner, M. Musgrove Rosemary and C. Capo, Tracing ground-water evolution in a limestone aquifer using Sr isotopes: Effects of multiple sources of dissolved ions and mineral-solution reactions,” Geology 22, 8 (1994).

    Google Scholar 

  10. M. Bau and P. Dulski, “Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations, Transvaal supergroup South Africa,” Precambrian Res. 79, 37–55 (1996).

    Google Scholar 

  11. A. Bellanca, D. Masetti and R. Neri, “Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes,” Chem Geol. 141, 141–152 (1997).

    Google Scholar 

  12. S. Birnbaum and M. Coleman, “Source of sulfur in the Ebro Basin (northern Spain) Tertiary nonmarine evaporite deposits as evidenced by sulfur isotopes,” Chem. Geol. 25, 163–168 (1979).

    Google Scholar 

  13. J. M. Bowler, and J. T. Teller, “Ouaternary evaporites and hydrologic change, Lake Tyrreell, Australia,” Australian J. Earth Sci. 33, 43–63 (1986).

  14. U. Brand and J. Veizer, “Chemical diagenesis of a multi component carbonate system: trace elements,” J. Sediment. Petr. 50, 1219– 1236 (1980).

    Google Scholar 

  15. G. W. Brass, “The variation of the marine 87Sr/86Sr ratio during Phanerozoic time: interpretation using a flux model”, Geochim. Cosmochim. Acta 40, 721–730 (1976).

  16. J. S. Bridge, and R. V. Demicco, Earth Surface Processes, Landforms and Sediment Deposits (Cambridge University Press, New York, 2008).

  17. K. Brodzikowski and A. Haluszczak, “Flame structures and associated deformations in Quaternary glaciolacustrine and glaciodeltaic deposits: examples from central Poland,” Geol. Soc. Spec. Publ. 29, 279–286 (2016).

    Google Scholar 

  18. J. Bruland, W. Kenneth, R. DonatDavid and A, “Hutchins Interactive influences of bioactive trace metals on biological production in oceanic waters,” Limnol. Oceanogr. 36, 1555–1577 (1991).

    Google Scholar 

  19. W. H. Burke, R. E. Denison, E. A, Hetherington, R. B. Koepnick, H. F. Nelson and J. B. Otto, “Variation of seawater 87Sr/86Sr throughout Phanerozoic time,” Geology 10, 516–519 (1982).

    Google Scholar 

  20. D. I. Cendon, T. M. Peryt, C. Ayora, J. J. Pueyod and C. Taberner, “The importance of recycling processes in the Middle Miocene Badenian evaporite basin (Carpathian foredeep): palaeoenvironmental implications,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 212, 141–158 (2004).

    Google Scholar 

  21. D. I. Cendon, C. Ayora, J. Pueyo, C. Taberner and M. Blanc-Valleron, “The chemical and hydrological evolution of the Mulhouse potash basin (France): Are ''marine'' ancient evaporites always representative of synchronous seawater chemistry?,” Chem. Geol. 252, 109–124 (2008).

    Google Scholar 

  22. H. Chamley, Clay Sedimentology (Springer-Verlag, New York, 1989).

  23. G. E. Claypool, W.T. Holser, I. R. Kaplan, H. Sakai and I. Zak, “The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation,” Chem. Geol. 28, 199–260 (1980).

    Google Scholar 

  24. V. Demirel and B. Peker, Iğdır–Tuzluca Civarına Ait Jeotermal Etüt Raporu (MTA Rapor, Ankara, 2004).

    Google Scholar 

  25. R. E. Denison, R. B. Koepnick, A. Fletcher, M. W. Howell and W. S. Callaway, “Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones,” Chem. Geol. 112, 131–143 (1994a).

    Google Scholar 

  26. F. D. Eckardt, and B. Spiro, “The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert Namibia,” Sed. Geo. 123, 255–273 (1999).

  27. H. P. Eugster and L. A. Hardie, “Sedimentation in an ancient playa-lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming,” Geol. Soc. Am. Bull. 86, 319–334 (1975).

    Google Scholar 

  28. G. Faure, Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  29. H. D. Foth, and L. M. Truck, Fundamentals of Soil Science (Wiley Eastern Pvt. Ltd., New Delhi, 1973).

  30. J. Gaillardet, J. Viers and B. Dupré, “Trace Elements in river waters,” Treatise on Geochem. 5, 25–272 (2014).

    Google Scholar 

  31. J. Garcia-Veigas, L. Rosell, F. Ortí, İ. Gündoğan and C. Helvacı, “Mineralogy, diagenesis and hydrochemical evolution in a probertite–glauberite–halite saline lake (Miocene, Emet Basin, Turkey),” Chem. Geol. 280, 352–364 (2011).

    Google Scholar 

  32. F. Guichard, T. M. Church, M. Treuil and H. Jaffrezic, “Rare earth in barites: distribution and effects on aqueous partitioning,” Geochim. Cosmochim. Acta 43 (7), 983–997 (1979).

    Google Scholar 

  33. P. Guo, L. Chiyang, W. Peng, W. Ke, Y. Haili and Li. Bei, “Geochemical behavior of rare elements in Paleogene saline lake sediments of the Qaidam Basin, NE Tibetan Plateau,” Carb. Evap. (2017).https://doi.org/10.1007/s13146-017-0394

    Book  Google Scholar 

  34. C. R. Handford, “Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin-Bristol Dry Lake, California,” Sedimentology 29, 239–253 (1982b).

    Google Scholar 

  35. L. A. Hardie, J. P. Smooth and H. P. Eugster, “Saline Lakes and their deposits,” Spec. Pub. Int. Ass. Sediment. 2, 7–41 (1978).

    Google Scholar 

  36. G. H. Haug, D. Gunther, L. C. Peterson, D. M. Sigman, K. A. Highen and B. Aeschlimann, “Climate and the collapse of Maya Civilization,” Science 299, 1731–1735 (2003).

    Google Scholar 

  37. W. T. Holser and I. R. Kaplan, “Isotope geochemistry of sedimentary sulfates,” Chem. Geol. 1, 93–135 (1966).

    Google Scholar 

  38. C. B. Hunt and D. R. Mabey, “Stratigraphy and structure, Death Valley, California, U.S,” Geol. Surv. Prof Pap. 494A, 162 (1966).

    Google Scholar 

  39. K. A. Hunter, J. P. Kim and P. L. Croot, “Metal-phytoplankton interactions in marine systems,” in Perspectives in Environmental Chemistry, Ed. by D. Macalady (Oxford University Press, UK, 1997), pp. 414–445.

    Google Scholar 

  40. S. K. Hüsing, W. J. Zachariasse, D. J. Van Hinsbergen, W. Krijgsman, M. İnceöz, M. Harzhauser, O. Mandic and A. Kroh, “Oligocene Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway,” Geo. Soc. Lon. Spec. Pub. 311, 107–132 (2009).

    Google Scholar 

  41. M. L. Jackson, “Frequency distribution of clay minerals in major soil groups as related to factors of soil formation,” Clays and Clay Minerals 6, 133–143 (1959).

  42. L. C. Kah, T. W. Lyons and J. T. Chesley, “Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution,” Precambr. Res. 111, 203–234 (2001).

    Google Scholar 

  43. B. S. Kamber, A. Greig and K.D. Collerson, “A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia,” Cosmochim. Acta 69 (4), 1041–1058 (2005).

    Google Scholar 

  44. M. S. Kayseri-Özer, R. H. Sancay, Ş. Şen, K. Sözeri, G. Métais, T. Ayyıldız and B. Varol, “Paleoenvironment of the Late Oligocene from the Kağizman–Tuzluca Basin (northeastern Anatolia) based on micro-and macrofloras,” Turkish J Earth Sci. (2017).https://doi.org/10.3906/yer-1612-26

  45. M. A. Kendall, “The stability of the deposit feeding community of a mud flat in the River Tees,” Estuar. Coastal Mar. Sci. 8, 15–22 (1979).

    Google Scholar 

  46. P. L. Koch, J. C. Zachos and D. L. Dettman, “Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming USA),” Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 61–89 (1995).

    Google Scholar 

  47. G. T. Kovacs, G. Morgan, M. Levine, and J. McCrann, “The Australian community overwhelmingly approves IVF to treat subfertility with increasing support over three decades,” Obstetr Gynaecol, 52, 302– 304 (2012).

  48. K. M. Krupka and R. J. Serne, Geochemical Factors Affecting Thebehavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments (Pacific Northwest National Laboratory, Washington, 2002)

    Google Scholar 

  49. A. Koçyiğit, A. Yılmaz, S. Adamia and S. Kuloshvili, “Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting,” Geod. Acta 14, 1–3 (2001).

    Google Scholar 

  50. S. Köksal, F. Toksoy Köksal and M. C. Göncüoğlu, “Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neo-tethys,” Int. J. Earth Sci. 106, 1181–1203 (2017).

    Google Scholar 

  51. J. Kushnir, “The composition and origin of brines during the Messinian desiccation event in the Mediterrnnean basin as deduced from concentrations of ions coprccipitated with gypsum and anhydrite,” Chem. Geol. 35, 333–350 (1982).

    Google Scholar 

  52. X. H. Lan, “Clay minerals as an index of paleoclimate,” Geological Science and Technology Information 9(4), 31–35 (1990).

  53. A. Longinelli, “Isotope geochemistry of some messinian evaporites: paleoenvironmental implications,” Palaeogeogr., Palaeoclimat, Palaeoecol. 29, 95 -123 (1979).

    Google Scholar 

  54. T. K. Lowenstein and L. A. Hardie, “Criteria for the recognition of salt-pan evaporites,” Sedimentology 32 (5), 627–644 (2006).

    Google Scholar 

  55. F. H. Lu, W. J. Meyers, and M. A. Schoonen, “S and O (SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain,” Geochimica et Cosmochimica Acta 65(18), 3081–3092 (2001).

  56. B. Lu, H. Wang, T. Oba, G. Xu, M. Shimamura, K. Toyoda, M. Murayama, and H. Zhao, “Monsoon climatic record of oxygen and carbon isotopic data from Porites lutea in Shalao fringing reef, Hainan Island,” Geochemica 31, (4) 315 – 320 (2002).

    Google Scholar 

  57. S. Lugli, R. Dominici, M. Barone, E. Costa, and C. Cavozzi, “Messinian halite and residual facies in the Crotone Basin (Calabria, Italy),” Geological Society of London Special Publications 285, 169–178 (2007).

  58. S. Lugli, V. Manzi, M. Roveri, B. C. Schreiber, “The Primary Lower Gypsum in the Mediterranean: A new facies interpretation for the first stage of the Messinian salinity crisis,” Palaeogeography, Palaeoclimatology, Palaeoecology 297, 83–99 (2010).

    Google Scholar 

  59. J. MacNamara and H. G. Thode, “Comparison of the isotopic composition of terrestrial and meteoritic sulfur,” The Physical Rev. 78, 307–308 (1950).

    Google Scholar 

  60. J. Madhavaraju and C. M. González-León, “Depositional conditions and source of rare earth elements in carbonate strata of the Aptian-Albian Mural Formation, Pitaycachi section, northeastern Sonora, Mexico,” Rev. Mexicana Ciencias Geol. 29, 478–491 (2012).

    Google Scholar 

  61. J. Madhavaraju and Y. Lee, “Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: implications on provenance and paleo-redox conditions,” Revista Mexicana de Ciencias Geológicas 26, 380–394 (2009).

    Google Scholar 

  62. J. Madhavaraju, C. M. González-León, Y. I. Lee, J. S. Armstrong-Altrin and L. M. Reyes-Campero, “Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico,” Cretaceous Res. 31, 400–414 (2010).

    Google Scholar 

  63. V. Manzi, S. Lugli, M. Roveri and B. C. Schreiber, “A new facies model for the Upper Gypsum (Sicily, Italy): chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean,” Sedimentology 56, 1937–1960 (2009).

    Google Scholar 

  64. V. Mekhtieva and L. Y. Brizanova, “La Reductıon Abıogene Des Sulphates Dans La Croute Terrestre,” Geol. Neftı Gaza. 3, 32–39 (1980).

    Google Scholar 

  65. G. Metais, S. Şen, K. Sözeri, S. Peigne and B. Varol, “Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia: new insights from the Kağizman–Tuzluca Basin,” J Asian Earth Sci. 107, 96–109 (2015).

    Google Scholar 

  66. M. Moragas, C. Martínez, V. Baqués, E. Playa, A. Trave, G. Alias and I. Cantarero, “Diagenetic evolution of a fractured evaporite deposit (Vilobí Gypsum Unit, Miocene, NE Spain),” Geofluids 13, 180–193 (2013).

    Google Scholar 

  67. R. W. Murray, M. R. B. Ten Brink, H. J. Brumsack, D. C. Gerlach and G. P. Russ, “Rare earth elements in Japan Sea sediments and diagenetic behaviour of Ce/Ce*: results from ODP Leg 127,” Geochim Cosmochim Ac. 55, 2453–2466 (1991a).

    Google Scholar 

  68. R. Nagarajan, J. Madhavaraju, J. S. Armstrong-Altrin and R. Nagendra, “Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India,” Geosci J. 15, 9–25 (2011).

    Google Scholar 

  69. R. Nagendra, R. Nagarajan, D. Bakkiaraj and J. S. Armstrong-Altrin, “Depositional and post-depositional setting of Maastrichtian limestone, Ariyalur Group, Cauvery Basin, South India: a geochemical appraisal,” Carbonates Evaporites 26, 127–147 (2011).

    Google Scholar 

  70. B. N. Nath, I. Roelandts, M. Sudhakar and W. L. Plueger, “Rare earth element patterns of the Central Indian Basin sediments related to their lithology,” Geophys Res Lett. 19, 1197–1200 (1992).

    Google Scholar 

  71. D. Neev, Recent Sedimentary in the Dead Sea (The Hebrew University, Jerusalem, 1964)

    Google Scholar 

  72. H. Nielsen, “Sulphur isotopes and the formation of evaporite deposits,” in Geology of Saline Deposits, Ed. by H. RichterBernburg (PTOC. Hann. Symp., Berlin, 1972), pp. 91–102.

  73. K. Norrish and B. W. Chappel, “X-ray fluorescence spectrometry, in Physical Methods in Determinative Mineralogy, Ed. by J. Zussman (Academic Press, Londan, 1977), pp. 201–272.

  74. A. Oren, “Microbial life at high salt concentrations: phylogenetic and metabolic diversity,” Saline Systems 4, 2 (2008).

    Google Scholar 

  75. A. Oren, “Microbial diversity and microbial abundance in saltsaturated brines: why are the waters of hypersaline lakes red?,” Nat Resour Env Iss. 15, 247–55 (2009).

    Google Scholar 

  76. F. Orti Cabo, J. J. Pueyo Mur, D.Geisler-Cussey, N. Dulau, “Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain),” Revista de Investigaciones Geológicas 38/39, 169–220 (1984a).

    Google Scholar 

  77. M. R. Palmer, C. Helvacı and A. E. Fallick, “Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites,” Chem. Geol. 209, 341–356 (2004).

    Google Scholar 

  78. A. Paytan, M. Kastner, D. Campbell and M. H. Thiemens, “Sulfur isotopic composition of Cenozoic seawater sulfate,”. Science 282, 1459– 1462 (1999).

    Google Scholar 

  79. A. Paytan, M. Kastner, D. Campbell and M. H. Thiemens, “Seawater sulfur isotope fluctuations in the Cretaceous,” Science 304, 1663–1665 (2004).

    Google Scholar 

  80. R. B. Perkins and D. Z. Piper, “The Meade Peak member of the Phosphoria Formation: temporal and spatial variations in sediment geochemistry,” in Life Cycle of the Phosphoria Formation: From Deposition to the PostMining Environment. Handbook of Exploration Geochemistry, Ed. by J. R. Hein (Elsevier, Amsterdam, 2004), pp. 73–110.

    Google Scholar 

  81. C. Pierre, “Applications ofstable isotope geochemistry to the study of evaporates,” Evaporites and hydrocarbons, Ed. by B. C. Schreiber (Columbia University Press, New York, 1988), pp. 300–344.

  82. E. Playa, F. Orti and L. Rosell, “Marine to non-marine sediementation in the upper Miocene evaporites of the Eastern Betics, SE Spain: sedimentological and geochemical evidences,” Sed. Geol. 133, 135–166 (2000).

    Google Scholar 

  83. E. Playa, D. I. Cendon, A. Trave, A. R. Chivas and A. Garcia, “Non-marine evaporites with both inherited marine and continental signatures: the Gulf of Carpentaria, Australia, at ~70 ka,” Sediment. Geol. 201, 267–285 (2007).

    Google Scholar 

  84. F. J. Poyato-Ariza, M. R. Talbot, M. A. Fregenal-Martinez, N. Melendez and S. Wenz, “First isotopic and multidisciplinary evidence for non-marine coelacanths and pycnodontiform fishes: paleoenvironmental implications,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 65–84 (1998).

    Google Scholar 

  85. K. Pye and D. H. Krinsley, “Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North Sea: their nature and relationship to secondary porosity,” Clay Min. 21, 443–457 (1986).

    Google Scholar 

  86. H. Rahimpour-Bonab, “A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity,” J. Pet Sci Eng. 58, 1–12 (2007).

    Google Scholar 

  87. N. Reinhardt, J. A. Proenza, C. Villanova-de-Benavent, et al., “Geochemistry and mineralogy of rare earth elements (ree) in bauxitic ores of the Catalan coastal range, NE Spain,” Minerals doi: (2018).https://doi.org/10.3390/min8120562

  88. P. D. Roy, W. Smykatz-Kloss, and R. Sinha, “Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: comparison and synthesis,” Quat Int. 144, 84–98 (2006).

  89. B. Schmitz, G. Aberg, L. Werdelin, P. Forey and S. E. Bendix-Almgreen, “87Sr/86Sr, Na, F, Sr and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats,” Geol. Soc. Am. Bull. 103, 786–794 (1991).

    Google Scholar 

  90. D. Schnurrenberger, J. Russell, and K. Kelts, “Classification of lacustrine sediments based on sedimentary components,” J. Paleolim. 29, 141–154 (2003).

  91. B. C. Schreiber, G. M. Freidman, A. Decima and E. Schreiber, “Depositional environments of upper Miocene (Messinian) evaporite deposits of the Sicilian Basin,” Sedimentology 23, 729–760 (1976).

    Google Scholar 

  92. L. Shumlyanskyy, R. M. Ellam and O. Mitrokhin, “The origin of basic rocks of the Korosten AMCG complex, Ukrainian shield: Implication of Nd and Sr isotope data,” Lithos 90, 214–222 (2006).

    Google Scholar 

  93. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes” Geological Society London Special Publications 423, 13–345 (1989).

    Google Scholar 

  94. F. Şaroğlu and Y. Yılmaz, Doğu Anadolu’da Neotektonik Dönemdeki Jeolojik Evrim ve Havza Modelleri (MTA, Ankara, 1986)

    Google Scholar 

  95. Ş. Şen, P. O. Antoine, B. Varol, T. Ayyıldız and K. Sözeri, “Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and Middle Miocene deposits of the Kağızman-Tuzluca Basin Eastern Turkey,” Naturwissenschaften 98, 407–423 (2011).

    Google Scholar 

  96. M. Şenalp, 1/25000 Scaled Detailed Petroleum Exploration Report of The Tuzluca (Kars) Basin (MTA Report, Ankara, 1969a)

  97. A. M. C. Şengör and Y. Yılmaz, “Tethyan evolution of Turkey: a plate tectonic approach,” Tectonophysics 75, 181–241 (1981).

    Google Scholar 

  98. A. M. C. Şengör and Y. Yılmaz, Türkiye'de Tetis’in Evrimi; Levha Tektoniği Açısından Bir Yaklaşım (Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, Ankara, 1983)

    Google Scholar 

  99. A. M. C. Şengör, N. Görür and F. Şaroğlu, “Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study,” in Strike-Slip Deformation, Basin Formation, and Sedimentation. Tulsa, USA, Ed. by K. T. Biddle and N. Christie-Blick (SEPM, Tulsa, 1985), pp. 227–264.

    Google Scholar 

  100. A. M. C. Şengör, M. S. Özeren, M. Keskin, M. Sakınç, A. D. Özbakır and I. Kayan, “Eastern Turkish high plateau as a small Turkic-type orogen: implications for post-collisional crust-forming processes in Turkic-type orogens,” Earth Sci. Rev. 90, 1–48 (2008).

    Google Scholar 

  101. Y. Takahashi, H. Yoshida, N. Sato, K. Hama, Y. Yusa and H. Shimizu, “W- and M-type tetrad efects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan,” Chem Geol. 184, 311–335 (2002).

    Google Scholar 

  102. S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Reviews of Geophysics 33, 241–265 (1995).

    Google Scholar 

  103. R. Tinterri, P. Muzzi Magalhaes, A. Tagliaferri and R. S. Cunha, “Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France),” Sediment. Geol. 344, 382–407 (2016).

    Google Scholar 

  104. R. Utrilla, F. Orti, C. Pierre and J. J. Pueyo, “Composicion de las evaporitas terciarias continentales de la Cuenca del Ebro: relacion con los ambientes deposicionales,” Rev. Soc. Geol. Esp. 4, 353–360 (1991).

    Google Scholar 

  105. B. Varol, Ş. Şen, T. Ayyıldız, K. Sözeri, Z. Karakaş and G. Metais, “Sedimentology and stratigraphy of Cenozoic deposits in the Kağizman–Tuzluca Basin, northeastern Turkey,” Int. J Earth Sci 105, 107–137 (2016).

    Google Scholar 

  106. J. Veizer, “Trace elements and isotopes in sedimentary carbonates,” Rev. Min. Geochem. 11, 265–299 (1983).

  107. J. Veizer, Y. Goddéris, and L. M. François, “Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon,” Nature 408, 698–701 (2000).

  108. N. I. Volkova, “Geochemistry of rare earth elements in waters and sediments of alkaline lakes in the Sassykkul depression, East Pamir,” Chem. Geol. 147, 265–277 (1998).

    Google Scholar 

  109. W. Yang, R. Spencer, and H. R. Krouse, “Stable isotope compositions of waters and sulfate specials therein, Death Valley, California, USA: Implications for inflow and sulfate sources, and arid basin climate,” Earth Planet. Sci. Lett. 147, 69–82 (1997).

  110. Ö. Yılmaz and M. Şener, Erzurum-Pasinler, ErzincanÇayırlı, Kars-Tuzluca, Malatya-Hacılar stratigrafik açınsama kuyularına ait örneklerin X-ışınları tekniği ile incelenmesi,” Türkiye Jeoloji Kurumu Bülteni 27, 31–40 (1984).

    Google Scholar 

  111. J. K. Warren, “Hydrologic setting, occurence and significance of gypsum in late Quaternary salt lakes, South Australia,” Sedimentology 29, 609–637 (1982).

    Google Scholar 

  112. J. K. Warren, Evaporites: Sediments Resources and Hydrocarbons (Springer, Berlin, 2006).

  113. K. H. Wedepohl, Handbook of Geochemistry (Springer-Verlag, Berlin, 1978).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Van Yüzüncü Yıl University Scientific Research Project Council (YYÜ, BAP, Project no: FHD-2018-7752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Güngör Yeşilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güngör Yeşilova, P., Yeşilova, Ç. Depositional Basin, Diagenetic Conditions and Source of Miocene Evaporites in the Tuzluca Basin in Northeastern Anatolia, Turkey: Geochemical Evidence. Geochem. Int. 59, 1293–1310 (2021). https://doi.org/10.1134/S0016702921130073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921130073

Keywords:

Navigation