Skip to main content
Log in

Introducing Improved Performance of Boxplot (New Method) in Estimating the Threshold (Separating Anomalies from the Background)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Hanza district is located in the southern part of Urumieh–Dokhtar Metallogenic belt in southeastern Iran. This region includes fourteen significant Cu anomalies associated with porphyry/vein-type copper mineralizations. This research is aimed to examine effective various processing techniques (i.e., univariate statistical methods) in the analysis of stream sediment geochemical datasets for separating anomalies from the background. The threshold values were estimated by various ways, including 1. [Mean ± 2 × Standard deviation (X + 2S)], 2.Median Absolute Deviation (MAD), 3. Exploratory Data Analysis (EDA or Tukey’s boxplot) and 4. Improved Performance of Boxplot (IPB). The latter method is introduced as an original method for the first time. The results derived from these methods; have been mapped in four classes associated with the first quartile, third quartile, and threshold values, respectively. The primary approach of this research is to investigate the effectiveness of each method in the identification of fourteen significant copper anomalies. The efficiency of each method is determined based on the “success rate”. To compare threshold estimation methods, the Dot Frequency Distribution Histogram was used, and the position of threshold values of various methods was displayed on the histogram. The results of threshold estimation have shown that MAD and IPB methods have the least threshold values for most elements compared to other methods. The efficiency of MAD and IPB methods for the threshold estimation is high. The threshold value estimated by EDA and [Mean ± 2Sdev] methods, in comparison with other methods, is high. Indeed, their efficiency is abysmal because using these methods will eliminate many of the anomalous areas. Thus, using the [Mean ± 2Sdev] and EDA methods is not suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Aftabi and H. Atapour, “Geochemical and petrological characteristics of shoshonitic and potassic calcalkaline magmatism at Sarcheshmeh and Dehsiahan porphyry copper deposits, Kerman, Iran,” Res. Bull. Isfahan Univ. 9, 127–156 (1997) (in Persian).

    Google Scholar 

  2. P. Afzal, and M. Ebadi Rajoli, “Separating geochemical anomalies by applying fractal concentration-area method, Case study: Kerver porphyry system, SE Iran,” In: The 1’st International Applied Geological Congress. Department of Geology, Islamic Azad University, (Mashad Branch, 2010).

  3. P. Afzal, A. Khakzad, P. Moarefvand, O. N. Rashidnejad, B. Esfandiari, Y. Alghalandis, “Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran,” J. Geochem. Explor. 104, 34–46 (2010).

    Article  Google Scholar 

  4. M. Alimohammadi, S. Alirezaei, and D. J. Kontak, “Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran,” Ore Geol. Rev. 70, 290–304 (2015).

    Article  Google Scholar 

  5. H. H. Asadi, S. Kianpouryan, Y. JunLu, and T. C. McCuaig, “Exploratory data analysis and C–A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran,” J. Geochem. Explor. 145, 233–241 (2014).

    Article  Google Scholar 

  6. V. Barnett and T. Lewis, Outliers in Statistical Data, 3rd Edition, (Wiley & Sons, New York, 1994). D. Bazin and H. Hubner, Copper Deposits in Iran (Geol Survey of Iran, Tehran, 1969).

  7. Behn, G., Camus, F., Carrasco, P., and Ware, H., 2001. Aeromagnetic signature of porphyry coppersystems in northern Chile and its geologic implications,” Econ Geol 96, 239–248 (2001).

    Article  Google Scholar 

  8. M. Berberian, G.C. King, “Towards a paleogeography and tectonic evolution of Iran,” Can. J. Earth Sci. 18, 210–265 (1981).

    Article  Google Scholar 

  9. F. Berberian, I. D. Muir, R. J. Pankhurst, M. Berberian, “Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran,” J. Geol. Soc. London 139, 605–614 (1982).

    Article  Google Scholar 

  10. A. A. Beus, S. V. Grigorian, Geochemical Exploration Methods for Mineral Deposit, Ed. By A. A. Levinson (Applied publishing, Illinois, 1977).

    Google Scholar 

  11. B. Bolviken, P.P. Stokke, J. Feder, and T. Josany, “The fractal nature of geochemical landscapes,” J. Geochem. Explor. 43, 91–109 (1992).

    Article  Google Scholar 

  12. M. Bounessaha and B. P. Atkinb, “An application of exploratory data analysis (EDA) as a robust non parametric technique for geochemical mapping in a semi-arid climate,” Appl. Geochem. 18, 1185–1195 (2003).

    Article  Google Scholar 

  13. G. E. P. Box and D. R. Cox, “An analysis of transformations,” J. R. Statist. Soc., Ser. B 26, 211–252 (1964).

    Google Scholar 

  14. E. J. M. Carranza, “Exploratory analysis of geochemical anomalies,” Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Handbook of Exploration and Environmental Geochemistry, Ed. by M. Hale (Elsevier, 2009), Vol. 11.

    Google Scholar 

  15. Q. Cheng, F. P. Agterberg, and S. B. Ballantyne, “The separartion of geochemical anomalies from background by fractal methods,” J. Geochem. Explor. 5, 109–130 (1994).

    Article  Google Scholar 

  16. Q. Cheng, F.P. Agterberg, and G. F. Bonham-Carter, “A spatial analysis method for geochemical anomaly separation,” J. Geochem. Explor. 56, 183–195 (1996).

    Article  Google Scholar 

  17. B. Chudasama, A. Porwal, I. G. Álvarez, T. Sanchari Thakur, and O. P. Kreuzer, “Calcrete-hosted surficial uranium systems in Western Australia: Prospectivity modeling and quantitative estimates of resources. Part 2 – Prospectivity modeling and exploration targets,” Ore Geol. Rev. 31, 906–936 (2018).

    Article  Google Scholar 

  18. I. D. Di Tommaso and N. Rubinstein, “Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina,” Ore Geol. Rev. 32, 275–290 (2007).

    Article  Google Scholar 

  19. I. Djokovic, M. N. Dimitrijevic, S. Cvetic, and M. D. Dimitrijevic, Geological map of Iran. Sheet 7448-Sarduiye. Scale 1 : 100,000 (1973).

  20. H. Geranian, A. R. Mokhtari, D. R. Cohen, “A comparison of fractal methods and probability plots in identifying and mapping soil metal contamination near an active mining area, Iran,” Sci. Tot. Environ. 463–464, 845–854 (2013).

    Article  Google Scholar 

  21. E.C. Grunsky, “The evaluation of geochemical survey data: data analysis and statistical methods using geographic information systems,” GIS for the Earth Sciences, Ed. by J. R. Harris, Geol. Ass. Can. Spec. Publ. 44, 229–283 (2006).

  22. M. Gutiérrez, V. M. Reyes Gomez, and D. Nuez Lopez, “Exploratory analysis of sediment geochemistry to determine the source and dispersion of Ba, Fe, Mn, Pb and Cu and in Chihuahua, Northern Mexico,” J. Geogr. Geol. 4, 26–39 (2012).

    Google Scholar 

  23. A. Habibnia, G. R. Rahimipour, and H. Ranjbar, “Comparison of Exploratory Data Analysis (EDA) and Median Absolute Deviation (MAD) in order to identify geochemical anomaly and mineralization potential areas (Case Study: Hanza district, southern of Urrmia–Dokhtar metallogenic belt),” J. Analyt. Numer. Methods Mining Eng. 9 (18), 89–101 (2019a) (In Persian).

    Google Scholar 

  24. A. Habibnia, G. R. Rahimipour, H. Ranjbar, “Anomaly delineation of porphyry copper deposits of Hanza region through geochemical data analysis and multi-spectral remote sensing,” J. Mining Environ. 10 (3), 747–762 (2019b).

    Google Scholar 

  25. J. Hassanzadeh, Metallogenic and Tectonomagmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Central Iran (Shahr e Babak Area, Keman Province),” Ph.D. Thesis (University of California, Los Angeles1993).

  26. H. E. Hawkes and J. S. Webb, Geochemistry in Mineral Exploration (Harper and Row, New York, 1962).

    Google Scholar 

  27. D. C. Hoaglin, “Exploratory data analysis: univariate methods,” International Encyclopedia of the Social & Behavioral Sciences, 2nd edition (2015), Vol. 8, 600–604

    Google Scholar 

  28. R. J. Howarth, S. A. M. Earle, “Application of a generalized power transformation to geochemical data,” Math. Geol. 11, 45–62 (1979).

    Article  Google Scholar 

  29. H. Kürzl, “Exploratory data analysis: recent advances for the interpretations of geochemical data,” J. Geochem. Explor. 30, 309–322 (1988).

    Article  Google Scholar 

  30. C. Lepeltier, “A simplified statistical treatment of geochemical data by graphical representation,” Econ. Geol. 64, 538–550 (1969).

    Article  Google Scholar 

  31. H. Madani, Basics of Geostatistic (Amirkabir University of Technology, Tehran Polytechnic, 1994) (in Persian).

  32. J. C. Mars and L.C. Rowan, “Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals,” Remote Sens. Environ. 114, 2011–2025 (2010).

    Article  Google Scholar 

  33. H. Mirnejad, A. Simonetti, and F. Molasalehi, “Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran,” Ore Geol. Rev. 39, 181–187 (2011).

    Article  Google Scholar 

  34. A. Mohebi, H. Mirnejad, D. Lentz, M. Behzadi, A. Kani, H. Taghizadeh, and A. Dolati, “Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data,” Ore Geol. Rev. 69, 187–198 (2015).

    Article  Google Scholar 

  35. P. J. O’Connor and C. Reimann, “Multielement regional geochemical reconnaissance as an aid to target selection in Irish Caledonian terrains,” J Geochem. Explor. 47, 63–87 (1993).

    Article  Google Scholar 

  36. M. Parsa, A. Maghsoudi, M. Yousefi, and E. J. M. Carranza, “Multifractal interpolation and spectrumearea fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets,” J. Afr. Earth Sci. 128, 5–15 (2017).

    Article  Google Scholar 

  37. M. Parsa, A. Maghsoudi, and M. Yousefi, “Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran,” Ore Geol. Rev. 92, 97–112 (2018).

    Article  Google Scholar 

  38. C. Reimann and P. Filzmoser, “Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data,” Environ Geol 39, 1001–1014 (1999).

    Article  Google Scholar 

  39. C. Reimann, P. Filzmoser, and R. G. Garrett, “Background and threshold: critical comparison of methods of determination,” Sci. Total Environ. 346, 1–16 (2005).

    Article  Google Scholar 

  40. C. Reimann and R. G. Garrett, “Geochemical background-concept and reality,” Sci. Total Environ 350, 12–27 (2005).

    Article  Google Scholar 

  41. A. P. Reise, A. J. Sousa, and E. C. Fonseca, “Soil geochemical prospecting for gold at Marrancos (Northern Portugual),” J. Geochem. Explor. 73, 1–10 (2001).

    Article  Google Scholar 

  42. P. Roshani, A. R. Mokhtari, and S. H. Tabatabaei, “Objective based geochemical anomaly detection—Application of discriminant function analysis in anomaly delineation in the Kuh Panj porphyry Cu mineralization (Iran),” J. Geochem. Explor. 130, 65–73 (2013).

    Article  Google Scholar 

  43. J. Shahabpour, “Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz,” J. Asian Earth Sci. l24, 405–417 (2005).

    Article  Google Scholar 

  44. R. H. Sillitoe, “The tops and bottoms of porphyry copper deposits,” Econ. Geol. 68, 799–815 (1973).

    Article  Google Scholar 

  45. R. H. Sillitoe, “Porphyry Copper Systems,” Econ. Geol. 105, 3–41 (2010).

    Article  Google Scholar 

  46. C. R. Stanley, Comparison of Data Classification Procedures in Applied Geochemistry using Monte Carlo Simulation, Ph.D. Thesis (Univ. of British Columbia, Vancouver, (1988).

  47. M. Templ, P. Filzmoser, and C. Reimann, “Cluster analysis applied to regional geochemical data: Problems and possibilities,” Appl. Geochem. 23, 2198–2213 (2008).

    Article  Google Scholar 

  48. J. W. Tukey, Exploratory Data Analysis (Addison-Wesley, Reading, 1977).

    Google Scholar 

  49. A. B. Vistelius, “The skew frequency distributions and the fundamental law of the geochemical processes,” J. Geol. 68, 1–22 (1960).

    Google Scholar 

  50. F. W. Wellmer, Statistical Evaluations in Exploration for Mineral Deposits (Springer New, York, 1998).

    Book  Google Scholar 

  51. J. Yang, P. A. Frederik, and Q. Cheng, “Anovelfiltering technique for enhancing mineralization associated geochemical and geophysical anomalies,” Comput. Geosci. 79, 94–104 (2015).

    Article  Google Scholar 

  52. L. Yang, O. Wang, H. Liu, E. J. M. Carranza, G. Li, and D. Zhou, “Identification and mapping of geochemical patterns and their significance for regional metallogeny in the southern Sanjiang, China,” Ore Geol. Rev. 90, 1042–405 (2017).

    Article  Google Scholar 

  53. C. Zhang and O. Selinus, “Statistics and GIS in environmental geochemistry - some problems and solutions,” J. Geochem. Explor. 64, 339–354 (1998).

    Article  Google Scholar 

  54. S. Zhou, K. Zhou, Y. Cui, J. Wang, and J. Ding, “Exploratory Data Analysis and Singularity Mapping in Geochemical Anomaly Identification in Karamay, Xinjiang, China,” J. Geochem. Explor. 154, 171–179 (2015).

    Article  Google Scholar 

  55. R. Zuo, “Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas,” J. Geochem. Explor. 136, 93–101 (2014).

    Article  Google Scholar 

  56. R. Zuo, Q. Xia, and D. Zhang, “A comparison studies of the C–A and S–A models with singularity analysis to identify geochemical anomalies in covered areas,” Appl. Geochem. 33, 165–172 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Habibnia, Gh. R. Rahimipour or H. Ranjbar.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibnia, A., Rahimipour, G.R. & Ranjbar, H. Introducing Improved Performance of Boxplot (New Method) in Estimating the Threshold (Separating Anomalies from the Background). Geochem. Int. 59, 1341–1353 (2021). https://doi.org/10.1134/S0016702921130036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921130036

Keywords:

Navigation