Skip to main content
Log in

The Na-rich and the K-rich Basic Melts of Vulture Volcano, Italy and Their Sources: Evidence from the Melt Inclusion Study in Clinopyroxene from the Haüyne Foidite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This article deals with the results of the study of primary melt inclusions in clinopyroxene megacrysts and phenocrysts from haüyne foidite of SVSl lava flow of the Vulture–San Michele subsyntheme of Vulture Volcano (Italy). The considered rock consists of megacrysts and numerous homogeneous and zoned phenocrysts of clinopyroxene, rare grains of plagioclase, phlogopite, haüyne, analcime, leucite, apatite, magnetite, and glass. The chemical composition of the clinopyroxene corresponds to diopside according to Morimoto classification (1989). The clinopyroxene-hosted melt inclusions are homogenized at 1200–1190°C in megacrysts, and at 1190–1170°C in phenocrysts, and have K-rich and Na-rich basic composition. At relatively close amount of alumina and MgO/(MgO+FeO) ratio, the Na-melt has higher contents of Mg, Ca, Fe, Ti, Mn, Cl and SO3 and lower Ba and water compared to K-melt. Both types of the alkaline basic melts are enriched in incompatible elements, the content of which are over 1–2 orders of magnitude higher than the mantle values, and the Na-melt is more enriched than the K-melt. The high amount of incompatible components in the melts and some HREE depletion relative to LREE indicate an involvement of undepleted mantle in magma generation. The Na-rich and K-rich melts conserved in clinopyroxene-hosted inclusions differ in Ta/Nb, Th/Yb, La/Nb, Y/Nb, Zr/Nb, Ti/Zr, and Ti/Y indicator ratios, which indicates different composition of parental magmas, different mantle sources, and different degrees of their melting. It is concluded that the considered haüyne foidite is formed by mixing of Na-rich and K-rich basic melts, which were derived from different parental magmas and different mantle sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Balashov, Rare-Earth Element Geochemistry (Nauka, Moscow, 1976) [in Russian]. T. Yu. Bazarova, I. T. Bakumenko, V. P. Kostyuk, L. I. Panina, V. S. Sobolev, and A. I. Chepurov, Magmatogenic Crystallization: Evidence from Melt Inclusion Study (Nauka, Novosibirsk, 1975) [in Russian].

  2. L. Becculava, M. Coltorti, P. Di Girolamo, L. Melluso, L. Milani, V. Morra, and F. Siena, “Petrogenesis and evolution of Mt. Vulture alkaline volcanism (Southern Italy),” Mineral. Petrol. 74, 277–297 (2002).

    Article  Google Scholar 

  3. K. Bell, “Radiogenic isotope constraints on relationships between carbonatites and associated rocks: a brief review,” J. Petrol. 39, 1987–1996 (1998).

    Article  Google Scholar 

  4. K. Bell, F. Castorina, G. Rosatelli, and F. Stoppa, “Plume activity, magmatism, and the geodynamic evolution of the Central Mediterranean,” Ann. Geophys. 49 (1), 357–369 (2006).

    Google Scholar 

  5. A. Caggianelli, M. De Fino, L. La Volpe, and G. Piccarretta, “Mineral chemistry of Monte Vulture volcanics: petrological inferences,” Mineral. Petrol. 41, 215–227 (1990).

    Article  Google Scholar 

  6. F. Castorina, F. Stoppa, A. Cundari, and M. Barbieri, “An enriched mantle source for Italy’s melilitite—carbonatite association as inferred by its Nd–Sr isotope signature,” Mineral. Mag. 64, 625–640 (2000).

    Article  Google Scholar 

  7. G. Cavarretta and G. Lombardi “Origin of sulphur in the Quaternary perpotassic melts from Italy: evidence from hauyne sulphur isotope data,” Chem. Geol. 82, 15–20 (1990).

    Article  Google Scholar 

  8. R. L. Cullers and J. L. Craf, “Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks,” Kimberlites, Part 7.2. Rare Earth Elements Geochemistry (Elsevier, 1984), Vol. 2, pp. 239–243 (1984).

  9. G. De Astis, P. D. Kempton, A. Peccerillo, and T. W. Wu, “Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy,” Contrib. Mineral. Petrol. 151, 331–351 (2006).

    Article  Google Scholar 

  10. M. De Fino, L. La Volpe, A. Peccerilo, G. Piccarreta, and G. Poli, “Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data,” Contrib. Mineral. Petrol. 92, 135–145 (1986).

    Article  Google Scholar 

  11. N. L. Dobretsov, Yu. N. Kochkin, A. P. Krivenko, and V. A. Kutolin, Rock-Forming Pyroxenes (Nauka, Moscow, 1971) [in Russian]. G. Faure, Principles of Isotope Geology (John Wiley, New York, 1986).

  12. P. Giannandrea, L. La Volpe, C. Principe, and M. Schiattarella, Carta Geologica del Monte Vulture Alla Scala 1 : 25.000 (Litografia Artistica Cartografica, Firenze, 2004).

    Google Scholar 

  13. P. Giannandrea, L. La Volpe, C. Principe, and M. Schiattarella, “Unità stratigrafiche a limiti inconformi e storia evolutiva del vulcano medio-Pleistocenico di Monte Vulture (Appennino meridionale, Italia),” Boll. Soc. Geol. Ital. 125, 67–92 (2006).

    Google Scholar 

  14. T. H. Green, “Experimental studies of trace-element partitioning applicable to igneous petrogenesis – Sedona 16 years later,” Chem. Geol. 117, 1–36 (1994).

    Article  Google Scholar 

  15. A. T. Isakova, L. I. Panina, and F. Stoppa, “Formation conditions of leucite-bearing lavas in the Bolsena Complex (Vulsini, Italy): research data on melt inclusions in minerals,” Russ. Geol. Geophys. 60 (2), 119–132 (2019).

    Article  Google Scholar 

  16. K. T. M. Johnson, “Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures,” Contrib. Mineral. Petrol. 133, 60–68 (1998).

    Article  Google Scholar 

  17. G. Lavecchia and N. Creati, “The Intramountaine ultra-alkaline Province (IVP) of Italy: a brief review with consideration on the thickness of the underlying lithosphere,” Boll. Della Soc. Geol. Ital. 1, 87–98 (2002).

    Google Scholar 

  18. F. P. Lesnov, Rare-Earth Elements in Ultramafic and Mafic Rocks and their Minerals. Volume 1. Major Rock Types. Rock-Forming Minerals (Geo, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  19. A. Lima, “Experimental study on silicate-melt inclusions in clinopyroxene phenocrysts from Roccamonfina lavas (Italy),” Mineral. Petrol. 70, 199–220 (2000).

    Article  Google Scholar 

  20. L. Marini, A. Paiotti, C. Principe, G. Ferrara, and R. Cioni, “Isotopic ratio and concentration of sulfur in the undersaturated alkaline magmas of Vulture volcano (Italy),” Bull. Volcanol. 56, 487–492 (1994).

    Article  Google Scholar 

  21. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  22. G. A. McKey, “Partitioning of rare elements between major silicate minerals and basaltic melts,” Geochemistry and Mineralogy of Rare Earth Elements 21, 45–78 (1989).

    Article  Google Scholar 

  23. L. Melluso and V. Morra, “Coexisting Ba-feldspar and melilite in a melafoidite lava at Mt. Vulture, Italy: role of volatiles and alkaline earths in bridging a petrological incompatibility,” Can. Mineral. 49, 983–1000 (2011).

    Article  Google Scholar 

  24. L. Melluso, V. Morra, and P. Di Girolamo, “The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite,” Mineral. Petrol. 56, 225–250 (1996).

    Article  Google Scholar 

  25. N. Morimoto, “Nomenclature of pyroxenes,” Can. Mineral. 27, 143–156 (1989).

    Google Scholar 

  26. A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil Island Arc in the Central Urals,” Geochem. Int. 40 (3), 219–232 (2002).

    Google Scholar 

  27. L. I. Panina and F. Stoppa, “Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture Volcano, S. Italy,” Cent. Eur. J. Geosci. 1 (4), 377–392 (2009).

    Google Scholar 

  28. A. Peccerillo, “Relationships between ultrapotassic and carbonate-rich volcanic rocks in central Italy: petrogenetic and geodynamic implications,” Lithos 43, 267–279 (1998).

    Article  Google Scholar 

  29. A. Peccerillo, Plio-Quaternary Volcanism in Italy (Springer-Verlag, Berlin–Heidelberg, 2005).

    Google Scholar 

  30. C. Principe, La Geologia del Monte Vulture (Book Consiglio Nazionale della Ricerche (CNR), 2006).

  31. K. Putirka, M. Johnson, R. Kinzler, J. Longhi, and D. Walker, “Thermobarometry of mafic igneous rocks based on clinopyroxene–liquid equilibria, 0–30 kbar,” Contrib. Mineral. Petrol. 123, 92–108 (1996).

    Article  Google Scholar 

  32. E. Roedder, Fluid Inclusions, Rev. Mineral. 12, (1984).

  33. G. Rosatelli, F. Stoppa, and P. Jones, “Intrusive calcite-carbonatite occurrence from Mt. Vulture volcano, southern Italy,” Mineral. Mag. 64 (4), 155–164 (2000).

    Article  Google Scholar 

  34. G. Rosatelli, F. Wall, and F. Stoppa, “Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy),” Lithos. 99, 229–248 (2007).

    Article  Google Scholar 

  35. V. J. M. Salters and J. Longhi, “Trace elements partitioning during the initial stages of melting beneath mid-ocean ridges,” Earth Planet. Sci. Lett. 166, 15–30 (1999).

    Article  Google Scholar 

  36. . V. Sklyarov, ED. P. Gladkochub, T. V. Donskaya, A. V. Ivanov, E. F. Letnikova, A. G. Mironov, I. G. Barash, V. A. Bulanov, and A. I. Sizykh, Interpretation of Geochemical Data (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  37. A. V. Sobolev, “Melt inclusions in minerals as a source of principle petrological information,” Petrology 4 (3), 209–220 (1996).

    Google Scholar 

  38. A. V. Sobolev, V. A. Migdisov, and M. V. Portnyagin, “Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus,” Petrology 4 (3), 307–318 (1996).

    Google Scholar 

  39. I. P. Solovova, A. V. Girnis, L. N. Kogarko, N. N. Kononkova, F. Stoppa, and G. Rosatelli, “Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy,” Lithos. 85, 113–128 (2005).

    Article  Google Scholar 

  40. F. Stoppa and C. Principe, “Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture, Southern Italy: the Monticchio lake formation,” J. Volcanol. Geotherm. Res. 80, 137–153 (1998).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.P. Solovova and N.L. Mironov for the discussion of paper and valuable comments.

Funding

This work was made in the framework of the State Task of the Institute of Geology and Mineralogy of the Siberian Branch, Russian Academy of Sciences, and was financially supported by the Russian Foundation for Basic Research (project no. 17-05-00285a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Panina, A. T. Isakova, F. Stoppa or M. A. Ryabukha.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panina, L.I., Isakova, A.T., Stoppa, F. et al. The Na-rich and the K-rich Basic Melts of Vulture Volcano, Italy and Their Sources: Evidence from the Melt Inclusion Study in Clinopyroxene from the Haüyne Foidite. Geochem. Int. 59, 1142–1156 (2021). https://doi.org/10.1134/S001670292112003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292112003X

Keywords:

Navigation