Skip to main content
Log in

Formation of the Earth and Moon: Influence of Small Bodies

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper discusses a model of the bombardment of the Earth and the Moon by small bodies when these planets were formed. It is shown that the total ice mass delivered with the bodies to the Earth from the feeding zone of the giant planets and the outer asteroid belt could have been comparable to the total mass of the Earth’s oceans. Objects that initially crossed Jupiter’s orbit could become Earth-crossers mainly within the first one million years. Most collisions of bodies originally located at a distance of 4 to 5 AU (astronomical units) from the Sun with the Earth occurred during the first ten million years. Some bodies from the Uranus and Neptune zones could fall onto the Earth in more than 20 million years. From their initial distances from the Sun of about 3 to 3.5 AU, some bodies could fall onto the Earth and Moon in a few billion years for the model that takes into account only the gravitational influence of the planets. The ratio of the number of bodies that collided with the Earth to the number of bodies that collided with the Moon varied mainly from 20 to 40 for planetesimals from the feeding zone of the terrestrial planets. For bodies originally located at a distance of more than 3 AU from the Sun, this ratio was mainly in the range between 16.4 and 17.4. The characteristic velocities of collisions of planetesimals from the feeding zones of the terrestrial planets with the Moon varied from 8 to 16 km/s, depending on the initial values of the semi-major axes and eccentricities of orbits of the planetesimals. The collision velocities of bodies that came from the feeding zones of Jupiter and Saturn with the Moon were mainly from 20 to 23 km/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. W. Cameron and W. R. Ward, “The origin of the Moon,” Lunar and Planet. Sci. Conf. 7, 120–122 (1976) (abstract).

  2. R. M. Canup, “Simulations of a late lunar–forming impact,” Icarus 168 (2), 433–456 (2004).

    Article  Google Scholar 

  3. R. M. Canup, “Forming a Moon with an Earth-like composition via a giant impact,” Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  4. R. M. Canup and E. Asphaug, “Origin of the Moon in a giant impact near the end of the Earth’s formation,” Nature 412(6848), 708–712 (2001).

    Article  Google Scholar 

  5. R. M. Canup and E. Pierazzo, “Retention of water during planet–scale collisions,” 37th Annual Lunar and Planetary Science Conference, abstract no. 2146 (2006).

  6. R. M. Canup, A. C. Barr, and D. A. Crawford, “Lunar-forming impacts: high-resolution SPH and AMR–CTH simulations,” Icarus 222, 200–219 (2013).

    Article  Google Scholar 

  7. R. M. Canup, K. Righter, N. Dauphas, K. Pahlevan, M. Ćuk, S. J. Lock, S. T. Stewart, J. Salmon, R. Rufu, M. Nakajima, and T. Magna, “Origin of the Moon,” In New Views on the Moon II; arXiv:2103.02045 (2021).

  8. R. I. Citron, O. Aharonson, H. Perets, and H. Genda, “Moon formation from multiple large impacts,” 45th Lunar and Planet. Sci. Conf. #2085 (abstract) (2014).

  9. M. Cuk and S. T. Stewart, “Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning,” Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  10. M. Cuk, D. P. Hamilton, S. J. Lock, and S. T. Stewart, “Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth,” Nature 539, 402–406 (2016).

    Article  Google Scholar 

  11. J. N. Cuzzi and R. C. Hogan, “Primary accretion by turbulent concentration: The rate of planetesimal formation and the role of vortex tubes,” 43th Lunar and Planet. Sci. Conf. #2536 (abstract) (2012).

  12. J. N. Cuzzi, R. C. Hogan, and K. Sharif, “Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula,” Astrophys. J. 687, 1432–1447 (2008).

    Article  Google Scholar 

  13. J. N. Cuzzi, R. C. Hogan, and W. F. Bottke, “Towards initial mass functions for asteroids and Kuiper belt objects,” Icarus 208, 518–538 (2010).

    Article  Google Scholar 

  14. B. J. R. Davidsson, H. Sierks, C. Güttler, F. Marzari, M. Pajola, H. Rickman, M. F. A’Hearn, A.-T. Auger, M. R. El-Maarry, S. Fornasier, P. J. Gutiérrez, H. U. Keller, M. Massironi, C. Snodgrass, J.-B. Vincent, and 33 co-authors, “The primordial nucleus of comet 67P/Churyumov–Gerasimenko,” Astron. and Astrophys. 592, A63 (2016).

    Article  Google Scholar 

  15. M. Drake and H. Campins, “Origin of water on the terrestrial planets,” Proc. IAU Symp. 229 “Asteroids, Comets, and Meteors”. 381–394 (2006).

  16. E. M. Galimov, “Problem of origin of the Earth–Moon system,” Problems of The Origin and Evolution of Biosphere, Ed. by E. M. Galimov (Nauka, Moscow, 1995), pp. 8–45 [in Russian].

    Google Scholar 

  17. E. M. Galimov, “Modern state of the problem of origin of the Earth–Moon system,” Problems of The Origin and Evolution of Biosphere, Ed. by E. M. Galimov (LIBROKOM, Moscow, 2008), pp. 213–222 [in Russian].

    Google Scholar 

  18. E. M. Galimov, “Formation of the Moon and the Earth from a common supraplanetary gas–dust cloud (lecture presented at the XIX all–Russia symposium on isotope geochemistry on November 16, 2010),” Geochem. Int. 49 (6) 537–554 (2011).

    Article  Google Scholar 

  19. E. M. Galimov, “Analysis of isotope systems (Hf–W, Rb–Sr, J–Pu–Xe, U–Pb) applied to the problem of planet formation by the example of the Earth–Moon system,” Problems of The Origin and Evolution of Biosphere, Ed. by E. M. Galimov (KRASAND, Moscow, 2013), pp. 47–59 [in Russian].

    Google Scholar 

  20. E. M. Galimov and A. M. Krivtsov, Origin of the Moon. New Concept (De Gruyter, Berlin, 2012).

    Google Scholar 

  21. E. M. Galimov, Yu. I. Sidorov, A. M. Krivtsov, A. V. Zabrodin, M. S. Legkostupov, and T. M. Eneev, “Dynamic model for the formation of the Earth–Moon system,” Geochem. Int. 43 (11), 1045–1055 (2005).

    Google Scholar 

  22. N. N. Gorkavyi, “The new model of the origin of the moon,” Bull. Am. Astron. Soc. 36, 861 (2004).

    Google Scholar 

  23. N. N. Gor’kavyi, “Formation of Moon and double asteroids,” Izv. Krymskoi Astrofiz. Obs. 10 3(2), 143–155 (2007) [in Russian].

  24. J. M. Greenberg, “Making a comet nucleus,” Astron. Astrophys. 330, 375–380 (1998).

    Google Scholar 

  25. J. M. Hahn and M. Malhotra, “Orbital evolution of planets embedded in a planetesimal disk,” Astron. J. 117, 3041–3053 (1999).

    Article  Google Scholar 

  26. W. K. Hartmann and D. R. Davis, “Satellite–sized planetesimals and lunar origin,” Icarus 24, 504–515 (1975).

    Article  Google Scholar 

  27. S. I. Ipatov, “Migration of bodies in the accretion of planets,” Solar Syst. Res. 27 (1), 65–79 (1993).

    Google Scholar 

  28. S. I. Ipatov, “Migration of small bodies to the Earth,” Solar Syst. Res. 29 (4), 261–286 (1995).

  29. S. I. Ipatov, “Migration of trans–Neptunian objects to the Earth,” Celest. Mech. Dyn. Astron. 73, 107–116 (1999).

    Article  Google Scholar 

  30. S. I. Ipatov, “Comet hazard to the Earth,” Adv. Space Res. 28 (8), 1107–1116 (2001). http://arXiv.org/format/astro–ph/0108187.

    Article  Google Scholar 

  31. S. I. Ipatov, “Collision probabilities of migrating small bodies and dust particles with planets,” Proc. IAU 5, Symp. S263. “Icy bodies in the Solar System,” Ed. by J. A. Fernandez, D. Lazzaro, D. Prialnik, and R. Schulz (Cambridge Univ. Press, 2010), pp. 41–44. http://arxiv.org/abs/0910.3017.

    Google Scholar 

  32. S. I. Ipatov, “Formation of trans-Neptunian satellite systems at the stage of condensations,” Solar Syst. Res. 51 (4), 294–314 (2017). https://arxiv.org/abs/1801.05217.

    Article  Google Scholar 

  33. S. I. Ipatov, “Formation of embryos of the Earth and the Moon from the common rarefied condensation and their subsequent growth,” Solar Syst. Res. 52 (5), 401–416 (2018). http://arxiv.org/abs/2003.09925.

    Article  Google Scholar 

  34. S. I. Ipatov, “Probabilities of collisions of planetesimals from different regions of the feeding zone of the terrestrial planets with the forming planets and the Moon,” Solar Syst. Res. 53 (5), 332–361 (2019). http://arxiv. org/abs/2003.11301.

    Article  Google Scholar 

  35. S. I. Ipatov, “Migration of planetesimals from beyond Mars’ orbit to the Earth,” 14th Europlanet Science Congress 2020, (2020) Online at https://www.epsc2020.eu/, id. EPSC2020–71; https://meetingorganizer.copernicus. org/EPSC2020/EPSC2020–71.html.

  36. S. I. Ipatov, Migration of Celestial Bodies in the Solar System (URSS, 2000, 2021) [in Russian]. https://doi.org/10.17513/np.451

  37. S. I. Ipatov and J. C. Mather, “Comet and asteroid hazard to the terrestrial planets,” Adv. Space Res. 33 (9), 1524–1533 (2004). http://arXiv.org/format/astro–ph/0212177.

    Article  Google Scholar 

  38. S. I. Ipatov and J. C. Mather, “Migration of small bodies and dust to near-Earth space,” Adv. Space Res. 37 (1), 126–137 (2006). http://arXiv.org/format/astro–ph/0411004.

    Article  Google Scholar 

  39. S. I. Ipatov and J. C. Mather, “Migration of comets to the terrestrial planets,” Proc. IAU Symp. No. 236 “Near–Earth Objects, Our Celestial Neighbors: Opportunity and Risk,” Ed. by A. G. Milani, B. Valsecchi, and D. Vokrouhlický, (Cambridge Univ. Press, Cambridge, 2007), pp. 55–64. http://arXiv.org/format/astro–ph/0609721.

    Google Scholar 

  40. A. Johansen, J. S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, and A. Youdin, “Rapid planetesimal formation in turbulent circumstellar disks,” Nature 448, 1022–1025 (2007).

    Article  Google Scholar 

  41. A. Johansen, A. Youdin, and H. Klahr, “Zonal flows and long–lived axisymmetric pressure bumps in magnetorotational turbulence,” Astrophys. J. 697, 1269–1289 (2009).

    Article  Google Scholar 

  42. A. Johansen, A. Youdin, and M.-M. Mac Low, “Particle clumping and planetesimal formation depend strongly on metallicity,” Astrophys. J. 704, L75–L79 (2009a).

    Article  Google Scholar 

  43. A. Johansen, H. Klahr, and T. Henning, “High-resolution simulations of planetary formation in turbulent protoplanetary discs,” Astron. Astrophys. 529, A62 (2011).

    Article  Google Scholar 

  44. A. Johansen, A. N. Youdin, and Y. Lithwick, “Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities,” Astron. Astrophys. 537, A125 (2012).

    Article  Google Scholar 

  45. H. F. Levison and M. J. Duncan, “The long-term dynamical behavior of short-period comets,” Icarus 108 (1), 18–36 (1994).

    Article  Google Scholar 

  46. H. F. Levison, L. Dones, C. R. Chapman, S. A. Stern, M. J. Duncan, and K. Zahnle, “Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune?” Icarus 151, 286–306 (2001).

    Article  Google Scholar 

  47. J. Lunine, I. J. Chambers, A. Morbidelli, and L. A. Leshin, “The origin of water on Mars,” Icarus 165 (1) 1–8 (2003).

    Article  Google Scholar 

  48. J. Lunine, A. Graps, D. P. O’Brien, A. Morbidelli, L. Leshin, and A. Coradini, “Asteroidal sources of Earth’s water based on dynamical simulations,” 38th Lunar and Planet. Sci. Conf. #1616 (abstract) (2007).

  49. W. Lyra, A. Johansen, H. Klahr, and N. Piskunov, “Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids,” Astron. Astrophys. 491, L41–L44 (2008).

    Article  Google Scholar 

  50. W. Lyra, A. Johansen, A. Zsom, H. Klahr, and N. Piskunov, “Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks,” Astron. Astrophys. 497, 869–888 (2009).

    Article  Google Scholar 

  51. M. Ya. Marov, A Space. From Solar System inward Universe (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  52. M. Marov, The Formation and Evolution of the Solar System. Oxford Research Encyclopedia of Planetary Science, Ed. by P. Read , (Oxford University Press, Oxford, 2018a).

    Google Scholar 

  53. M. Ya. Marov and S. I. Ipatov, “Migration of dust particles and volatiles delivery to the terrestrial planets,” Solar Syst. Res. 39 (5), 374–380 (2005).

    Article  Google Scholar 

  54. M. Ya. Marov and S. I. Ipatov, “Volatile inventory and early evolution of planetary atmospheres,” Collisional Processes in the Solar System, Ed. by M. Ya. Marov and H. Rickman, Astrophysics and Space Science Library (Dordrecht: Kluwer Academic Publishers, 2001), Vol. 261, pp. 223–247.

  55. M. Ya. Marov and S. I. Ipatov, “Water inventory from beyond the Jupiter orbit to the terrestrial planets and the Moon,” Proc. IAU 14, Proc. IAU Symp. No. 345 “Origins: from the Protosun to the First Steps of Life,” Ed. by B. G. Elmegreen, L. V. Tóth, and M. Gudel (Cambridge Univ. Press, 2020), pp. 164–167.

  56. M. Ya. Marov, S. A. Voropaev, S. I. Ipatov, D. D. Badyukov, E. N. Slyuta, A. V. Stennikov, V. S. Fedulov, N. V. Duzhenko, E. M. Sorokin, and E. V. Kronrod, Formation of Moon and Earth Earth’e Evolution (URSS, Moscow, 2019) [in Russian]

    Google Scholar 

  57. A. Morbidelli, J. Chambers, J. I. Lunine J. M. Petit, F. Robert, G. B. Valsecchi, and K. E. Cyr, “Source regions and timescales for the delivery of water to the Earth,” Meteoritics Planetary Sci. 35, 1309–1320 (2000).

    Article  Google Scholar 

  58. A. Morbidelli, J. I. Lunine, D. P. O’Brien, S. N. Raymond, and K. J. Walsh, “Building terrestrial planets,” Annu. Rev. Earth Planet. Sci. 40 (1), 251–275 (2012).

    Article  Google Scholar 

  59. V. P. Myasnikov and V. I. Titarenko, “Evolution of self–gravitating clumps of a gas / dust nebula participating in the accumulation of planetary bodies,” Solar Syst. Res. 23(1), 7–13 (1989).

    Google Scholar 

  60. V. P. Myasnikov and V. I. Titarenko, “Evolution of a self-gravitating gas / dust clump with allowance for radiative transfer in a diffusional approximation,” Solar Syst. Res. 23, 126–133 (1990).

    Google Scholar 

  61. D. Nesvorný, F. Roig, and W. F. Bottke, “Modeling the historical flux of planetary impactors,” Astron. J. 153 (3), art. ID A103 (2007).

    Article  Google Scholar 

  62. D. Nesvorny, A. N. Youdin, and D. C. Richardson, “Formation of Kuiper belt binaries by gravitational collapse,” Astron. J. 140, 785–793 (2010).

    Article  Google Scholar 

  63. D. P. O’Brien, K. J. Walsh, A. Morbidelli, S. N. Raymond, and A. M. Mandell, “Water delivery and giant impacts in the ‘Grand Tack’ scenario,” Icarus 239, 74–84 (2014).

    Article  Google Scholar 

  64. S. Okabayashi, T. Yokoyama, T. Hirata, K. Terakado, and E. M. Galimov, “Iron isotopic composition of very low-titanium basalt deduced from the iron isotopic signature in Luna 16, 20, and 24 soil,” Geochim. Cosmochim. Acta 269, 1–14 (2019). https://doi.org/10.1016/j.gca.2019.10.020; https://www.x–mol.com/paper/5910114

  65. J.-M. Petit, A. Morbidelli, and J. Chambers, “The primordial excitation and clearing of the asteroid belt,” Icarus 153 (2), 338–347 (2001).

    Article  Google Scholar 

  66. S. N. Raymond, T. Quinn, and J. I. Lunine, “Making other earths: dynamical simulations of terrestrial planet formation and water delivery,” Icarus 168(1), 1–17 (2004).

    Article  Google Scholar 

  67. A. E. Ringwood, “Flaws in the giant impact hypothesis of lunar origin,” Earth Planet. Sci. Lett. 95 (3–4), 208–214 (1989).

    Article  Google Scholar 

  68. R. Rufu and O. Aharonson, “A multiple impact hypothesis for Moon formation,” 46th Lunar Planet. Sci. Conf. #1151 (abstract) (2015).

  69. R. Rufu and O. Aharonson “A multiple–impact origin for the Moon,” Nature Geosci. 10, 89–94 (2017).

    Article  Google Scholar 

  70. S. V. Vasil’ev, A. M. Krivtsov, and E. M. Galimov, “Study of the planet–satellite system growth process as a result of the accumulation of dust cloud material,” Solar. Syst. Res. 45(5), 410–419 (2011).

    Article  Google Scholar 

  71. A. V. Vityazev and G. V. Pechernikova, “Early differentiation of the composition of the Earth and the Moon,” Izv. Phys. Solid Earth 32 (6), 471–483 (1996) [in Russian].

    Google Scholar 

  72. A. N. Youdin, “On the formation of planetesimals via secular gravitational instabilities with turbulent stirring,” Astrophys. J. 731, A99 (2011).

    Article  Google Scholar 

  73. A. N. Youdin and S. J. Kenyon, “From disks to planets,” Planets, Stars and Stellar Systems, Ed. by T. D. Oswalt, L. M. French, and P. Kalas, Solar and Stellar Planetary Systems 3, 1–62 (2013).

Download references

Funding

The studies of falls of bodies onto the Earth were carried out under government-financed research project 0137-2019-0004 for the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. The studies of falls of bodies onto the Moon were supported by the Russian Science Foundation, project 21-17-00120, https://rscf.ru/project/21-17-00120/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ya. Marov or S. I. Ipatov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marov, M.Y., Ipatov, S.I. Formation of the Earth and Moon: Influence of Small Bodies. Geochem. Int. 59, 1010–1017 (2021). https://doi.org/10.1134/S0016702921110070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921110070

Keywords:

Navigation