Skip to main content

Disequilibrium Uranium (234U/238U) in Natural Aqueous Objects and Climatic Variations: World Ocean

Abstract

Natural waters usually demonstrate the disturbance of radioactive equilibrium between parent 238U and and daughter 234U (usually, 234U/238U ≈ 0.8–3 in activities). The ratio of 234U/238U > 10 found in groundwaters can be explained by climatic variations, and it is result of 234U accumulation in permafrost rocks during cold periods and its more rapid loss compared to 238U during thawing. We tested this hypothesis for data on uranium isotope composition in water, and also chemo- and biogenic formations of the World Ocean. Most significant enrichment in 234U is discovered in the northern and internal seas during climatic warmings, which is consistent with an inferred influence of the permafrost formation and degradation on the anomalous increase of 234U/238U in groundwaters. Sampling of the Barents Sea shows that the uranium-234 enrichment in oceanic water increases with increase (a) of isolation from oceanic circulation system, (b) of the relative length of the coastal line, (c) and the contribution of continental waters to the chemical balance of the basin.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    R. F. Anderson, H. Cheng, R. L. Edwards, M. Q. Fleisher, C. T. Hayes, K.-F. Huang, D. Kadko, P. J. Lam, W. M. Landing, Y. Lao, Y. Lu, C. I. Measures, S. B. Moran, P. L. Morton, D. C. Ohnemus, L. F. Robinson, and R. U. Shelley, “How well can we quantify dust deposition to the ocean?” Phil. Trans. R. Soc. A. 374, 20150285 (2016).

    Article  Google Scholar 

  2. 2

    M. F Arndt, and L. West, “A Study of the factors affecting the gross alpha measurement, and a radiochemical analysis of some groundwater samples from the state of Wisconsin exhibiting an elevated gross alpha activity, Wisconsin Groundwater Management Practice Monitoring Pproject, DNR–176. (2004).

  3. 3

    E. Bard, B. Hamelin, and R. G. Fairbanks “U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130.000 years,” Nature 346, 456–458 (1990).

    Article  Google Scholar 

  4. 4

    E. Bard, R. G. Fairbanks, B. Hamelin, A. Zindler, and C. T. Hoang, “Uranium-234 anomalies in corals older than 150,000 years,” Geochim. Cosmochim. Acta 55, 2385–2390 (1991).

    Article  Google Scholar 

  5. 5

    E. Bard, B. Hamelin, M. Arnold, L. Montaggioni, G. Cabioch, G. Faure, and F. Rougerie, “Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge,” Nature 382, 241–244 (1996).

    Article  Google Scholar 

  6. 6

    M. Bar-Matthews, G. J. Wasserburg, and J. H. Chen, “Diagenesis of fossil coral skeletons: correlation between trace elements, textures, and 234U/238U,” Geochim. Cosmochim. Acta 57, 257–276 (1993).

    Article  Google Scholar 

  7. 7

    W. S. Broecker, A. Kaufman, and R. M. Trier, “The residence time of thorium in surface sea water and its implications regarding the rate of reactive pollutants,” Earth Planet. Sci. Lett. 20 (1), 35–44 (1973).

    Article  Google Scholar 

  8. 8

    G. Cabioch and L. K. Ayliffe, “Raised coral terraces at Malakula, Vanuatu, Southwest Pacific, indicate high sea level during Marine Isotope Stage 3,” Quat. Res. 56, 357–365 (2001).

    Article  Google Scholar 

  9. 9

    P. Calsteren van and L. Thomas, “Uranium-series dating applications in natural environmental science,” Earth-Sci. Rev. 75, 155–175 (2006).

    Article  Google Scholar 

  10. 10

    F. Chabaux, J. Riotte, and O. Dequincey, “U–Th–Ra fractionations during weathering and river transport,” Rev. Mineral. Geochem. 52 (1), 533–576 (2003).

    Article  Google Scholar 

  11. 11

    P. I. Chalov, “U234/U238 isotope ratio in some secondary minerals,” Geokhimiya, No. 2, 165–170 (1959).

    Google Scholar 

  12. 12

    P. I. Chalov, Extended Abstracts of Candidate’s Dissertation in Geology and Mineralogy (Alma-Ata, 1954) [in Russian].

  13. 13

    P. I. Chalov, Isotope Fractionation of Natural Uranium (Ilim, Frunze, 1975) [in Russian].

  14. 14

    P. I. Chalov, Methodical Guide on Uranium–Isotope Modeling of Groundwaters under Active Water-Exchange Conditions (Ilim, Bishkek, 1991) [in Russian].

    Google Scholar 

  15. 15

    J. Chappell, A. Omura, T. Esat, M. McCulloch, J. Pandolfi, Y. Ota, and B. Pillans “Reconcilitation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygene isotope records,” Earth Planet. Sci. Lett. 141, 227–236 (1996).

    Article  Google Scholar 

  16. 16

    J. H. Chen, R. L. Edwards, and G. J. Wasserburg, “238U, 234U and 232Th in seawater,” Earth Planet. Sci. Lett. 80, 241–251 (1986).

    Article  Google Scholar 

  17. 17

    H. Cheng, J. F. Adkins, R. L. Edwards, and E. A. Boyle, “230Th dating of deep-sea corals,” Geochem. Cosmochim. Acta 64 (14), 2401–2416 (2000).

    Article  Google Scholar 

  18. 18

    V. V. Cherdyntsev, “Isotope composition of radioelements in natural objects and their significance in geochronology,” Proc. 3 rd Session of Commission on Determination of Absolute Age of Geological Formations (Moscow, 1955), pp. 175–233 [in Russian].

  19. 19

    V. V. Cherdyntsev, Uranium-234 (Atomizdat, 1967) [in Russian]

    Google Scholar 

  20. 20

    J. K. Cochran and S. Krishnaswami, “Radium, thorium, uranium and 210Pb in deep–sea sediments and sediment pore waters from the north equatorial Pacific,” Am. J. Sci. 280, 849–889 (1980).

    Article  Google Scholar 

  21. 21

    K. Copard, C. Colin, G. M. Henderson, J. Scholten, E. Douville, M.-A. Sicre, and N. Frank Late “Holocene intermediate water variability in the northeastern Atlantic as recorded by deep–sea corals,” Earth and Planet. Sci. Lett. 313–314, 34–44 (2012).

    Article  Google Scholar 

  22. 22

    K. B. Cutler, L. R. Edwards, F. W. Taylor, H. Cheng, J. Adkins, C. D. Gallup, P. M. Cutler, G. S. Burr, and A. L. Bloom, “Rapid sea-level fall and deep-ocean temperature change since the last interglacial period,” Earth Planet. Sci. Lett. 206, 253–271 (2003).

    Article  Google Scholar 

  23. 23

    K. B. Cutler, S. C. Gray, G. S. Burr, R. L. Edwards, F. W. Taylor, G. Cabioch, J. W. Beck, H. Cheng, and J. Moore, “Radiocarbon calibration and comparison to 50 Kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea,” Radiocarbon 46, 1127–1160 (2004).

    Article  Google Scholar 

  24. 24

    A. N. Dia, A. S. Cohen, R. K. O’Nions, and N. J. Shackleton, “Seawater Sr isotope variation over the past 300 kyr and influence of global climate cycles,” Nature 356, 786–788 (1992).

    Article  Google Scholar 

  25. 25

    M. Douarin, M. Elliot, S. R. Noble, D. Sinclair, L.‑A. Henry, D. Long, S. G. Moreton, and J. M. Roberts, “Growth of north–east Atlantic cold–water coral reefs and mounds during the Holocene: a high resolution U–series and 14C chronology,” Earth Planet. Sci. Lett. 375, 176–187 (2013).

    Article  Google Scholar 

  26. 26

    E. O. Dubinina, S. A. Kossova and A. Yu. Miroshnikov, “Sources and mechanisms of seawater freshening in Tsivolky and Sedov bays (Novaya Zemlya Archipelago) based on isotope data (δD and δ18O),” Oceanology 59 (6), 836–847 (2019).

    Article  Google Scholar 

  27. 27

    R. M. Dunk, R. A. Mills, and W. J. Jenkins, “A reevaluation of the oceanic uranium budget for the Holocene,” Chem. Geol. 190, 45–67 (2002).

    Article  Google Scholar 

  28. 28

    A. Dutton, K. Rubin, N. McLean, J. Bowring, E. Bard, R. L. Edwards, G. M. Henderson, M. R. D. Reid, A. Richards, K. W. W. Sims, J. D. Walker, and Y. Yokoyama, “Data reporting standards for publication of U–series data for geochronology and timescale assessment in the earth sciences,” Quat. Geochronol. 39, 142–149 (2017).

    Article  Google Scholar 

  29. 29

    M. H. Eisele, The Long–Term Development of Cold–Water Coral Mounds in the NE–Atlantic. Diss. zur Erlangung des Akadem. Grades eines Doktors der Naturwiss (Bremen, 2010).

  30. 30

    A. Eisenhauer, G. J. Wasserburg, J. H. Chen, G. Bonani, L. B. Collins, Z. R. Zhu, and K. H. Wyrwoll, “Holocene sea-level determination relative to the Australian continent: U/Th(TIMS) and 14C(AMS) dating of coral cores from the Abrolhos Islands,” Earth Planet. Sci. Lett. 114, 529–547 (1993).

    Article  Google Scholar 

  31. 31

    T. M. Esat and Y. Yokoyama, “Correlated uranium and sea-level fluctuations in Late Quaternary oceans,” Goldschmidt–2000, J. Conf. Abstr. 5 (2), 387–388 (2000).

    Google Scholar 

  32. 32

    T. M. Esat and Y. Yokoyama, “Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales,” Geochim. Cosmochim. Acta 70, 4140–4150 (2006).

    Article  Google Scholar 

  33. 33

    T. M. Esat, M. T. McCulloch, J. Chappell, B. Pillans, and A. Omura, “Rapid fluctuations in sea level recorded at Huon Peninsula during the Penultimate deglaciation,” Science 283, 197–201 (1999).

    Article  Google Scholar 

  34. 34

    C. D. Gallup, R. L. Edwards, and R. G. Johnson, “The timing of high sea levels over the past 200.000 years,” Science 263, 796–800 (1994).

    Article  Google Scholar 

  35. 35

    M. Gutjahr, D. Vance, D. L. Hoffmann, C.–D. Hillenbrand, G. L. Foster, J. W. B. Rae, and G. Kuhn, “Structural limitations in deriving accurate U-series ages from calcitic cold–water corals contrasts with robust coral radiocarbon and Mg/Ca systematics,” Chem. Geol. 355, 69–87 (2013).

    Article  Google Scholar 

  36. 36

    B. Hamelin, E. Bard, A. Zindler, and R. G. Fairbanks, “234U/238U mass spectrometry of corals: How accurate is the U–Th age of the last interglacial period?” Earth Planet. Sci. Lett. 106, 169–180 (1991).

    Article  Google Scholar 

  37. 37

    G. M. Henderson and R. F. Anderson, “The U-series toolbox for paleoceanography,” Rev. Mineral. Geochem. 52 (1), 493–531 (2003).

    Article  Google Scholar 

  38. 38

    G. M. Henderson and K. W. Burton, “Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts,” Earth Planet. Sci. Lett. 170, 169–179 (1999).

    Article  Google Scholar 

  39. 39

    G. M. Henderson, N. C. Slowey, and G. A. Haddad, “Fluid flow through carbonate platforms: constraints from 234U/238U and Cl– in Bahamas pore-waters,” Earth Planet. Sci. Lett. 169 (1–2), 99–111 (1999).

    Article  Google Scholar 

  40. 40

    G. M. Henderson, “Seawater (234U/238U) during the last 800 thousand years,” Earth Planet. Sci. Lett. 199 (1–2), 97–110 (2002).

    Article  Google Scholar 

  41. 41

    https://data.giss.nasa.gov/. Accessed date, February 10, 2020.

  42. 42

    G. P. Kiselev, Even-Numbered Isotopes in Geosphere (UrO RAN, Yekaterinburg, 1999) [in Russian].

    Google Scholar 

  43. 43

    J. Kronfeld, “Uranium deposition and Th-234 alpha-recoil: an explanation for extreme U–234/U–238 fractionation within the Trinity aquifer,” Earth Planet. Sci. Lett. 21, 327–330 (1974).

    Article  Google Scholar 

  44. 44

    J. Kronfeld and J. C. Vogel, “Uranium isotopes in surface waters from southern Africa,” Earth Planet. Sci. Lett. 105, 191–195 (1991).

    Article  Google Scholar 

  45. 45

    J. Kronfeld, E. Gradsztajn, H. W. Müller, J. Radin, A. Yaniv, and R. Zach, “Excess 234U: an aging effect in confined waters,” Earth Planet. Sci. Lett. 27, 342–345 (1975).

    Article  Google Scholar 

  46. 46

    T. L. Ku, “An evaluation of the 234U/238U method as a tool for dating pelagic sediments,” J. Geophys. Res. 70 (14), 3457–3474 (1965).

    Article  Google Scholar 

  47. 47

    T. L. Ku, K. G. Knauss, and G. G. Mathieu, “Uranium in open ocean: concentration and isotopic composition,” Deep Sea Res. Part II Topical Stud. Oceanogr. 24 (11), 1005–1017 (1977).

    Article  Google Scholar 

  48. 48

    M. I. L’vovich, Water and Life (Mysl’, Moscow, 1986) [in Russian].

    Google Scholar 

  49. 49

    M. López Correa, P. Montagna, N. Joseph, A. Rüggeberg, J. Fietzke, S. Flögel, B. Dorschel, S. L. Goldstein, A. Wheeler, and A. Freiwald, “Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes,” Quat. Sci. Rev. 34, 24–43 (2012).

    Article  Google Scholar 

  50. 50

    K. R. Ludwig, B. J. Szabo, J. G. Moore, and K. R. Simmons, “Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs,” Geology 19, 171–174 (1991).

    Article  Google Scholar 

  51. 51

    K. R. Ludwig, D. R. Muhs, K. R. Simmons, R. B. Halley, and E. A. Shinn, “Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda,” Geology 24 (3), 211–214 (1996).

    Article  Google Scholar 

  52. 52

    Method of Measurement of Volume Activity of Uranium Isotopes (238U, 234U, 235U) in samples of natural (fresh and mineralized), Technological, and Sewage Waters by Alpha-Spectrometric Method with Radiochemical Preparation. FR.1.40.2013.15389 (VIMS, Moscow, 2013) [in Russian].

  53. 53

    W. S. Moore, “The thorium isotope content of ocean water,” Earth Planet. Sci. Lett. 53 (3), 419–426 (1981).

    Article  Google Scholar 

  54. 54

    D. R. Muhs, “The geologic records of dust in the Quaternary,” Aeolian Res. 9, 3–48 (2013).

    Article  Google Scholar 

  55. 55

    V. A. Polyakov, “Study of hydrochemical variations and resources of groundwaters of coastal water inlet: isotope data,” Proceedings of All-Union Conference on Hydrogeology (Zvenigorod, 1991), pp. 60–62 [in Russian].

  56. 56

    E.-K. Potter, C. H. Stirling, U. H. Wiechert, A. N. Halliday, and C. Spötl, “Uranium–series dating of corals in situ using laser–ablation MC–ICPMS,” Int. J. Mass Spectrometry 240, 27–35 (2005).

    Article  Google Scholar 

  57. 57

    D. K. Rea, “The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind,” Rev. Geophys. 32 (2), 159–195 (1994).

    Article  Google Scholar 

  58. 58

    G. P. Roberts, S. L. Houghton, C. Underwood, I. Papanikolaou, P. van Calsteren, T. Wigley, F. J. Cooper, and J. M. McArthur, “Localization of Quaternary slip rates in an active rift in 105 years: An example from central Greece constrained by U–234–Th–230 coral dates from uplifted paleoshorelines,” J. Geophys. Res. 114, B1046 (2009).

    Google Scholar 

  59. 59

    L. F. Robinson, N. S. Belshaw, and G. M. Henderson, “U and Th isotopes in seawater and modern carbonates from the Bahamas,” Geochim. Cosmochim. Acta 68 (8), 1777–1789 (2004).

    Article  Google Scholar 

  60. 60

    A. D. Russell, S. R. Emerson, B. K. Nelson, J. Erez, and D. Lea, “Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations,” Geochim. Cosmochim. Acta 58 (2) 671–681 (1994a).

    Article  Google Scholar 

  61. 61

    A. D. Russell, R. L. Edwards, J. A. Hoff, D. McCorkle, and Sayles, “Sediment source of 234U suggested by d234U in North Pacific pore waters. Fall Meeting Supplement,” EOS 75 (44), 332 (1994b).

    Article  Google Scholar 

  62. 62

    J. C. Scholten, R. Botz, H. Paetsch, P. Stoffers, and M. Weinelt, “High-resolution uranium-series dating of Norwegian–Greenland Sea sediments: 230Th vs. δ18O stratigraphy,” Marine Geol. 121 (1–2), 77–85 (1994).

    Article  Google Scholar 

  63. 63

    Y. Shaked, A. Agnon, B. Lazar, S. Marco, U. Avner, and M. Stein, “Large earthquakes kill coral reefs at the north-west Gulf of Aqaba,” Terra Nova 16, 133–138 (2004).

    Article  Google Scholar 

  64. 64

    C.-C. Shen, K.-S. Li, K. Sieh, D. Natawidjaja, H. Cheng, X. Wang, R. L. Edwards, D. D. Lam, Y.-T. Hsieh, T.‑Y. Fan, A. J. Meltzner, F. W. Taylor, T. M. Quinn, H.-W. Chiang, and K. H. Kilbourne, “Variation of initial 230Th/232Th and limits of high precision U-Th dating of shallow-water corals,” Geochim. Cosmochim. Acta 72, 4201–4223 (2008).

    Article  Google Scholar 

  65. 65

    R. M. Spratt and L. E. Lisiecki, “A Late Pleistocene sea level stack,” Clim. Past. 12, 1079–1092 (2016).

    Article  Google Scholar 

  66. 66

    M. Stein, G. J. Wasserburg, P. Aharon, J. H. Chen, Z. R. Zhu, A. Bloom, and J. Chappell, “TIMS U-series dating and stable isotopes of the last interglacial event in Papua New Guinea,” Geochim. Cosmochim. Acta 57, 2541–2554 (1993).

    Article  Google Scholar 

  67. 67

    C. H. Stirling, T. M. Esat, K. Lambeck, and M. T. McCulloch, “Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral growth,” Earth Planet. Sci. Lett. 160, 745–762 (1998).

    Article  Google Scholar 

  68. 68

    I. D. Streletskaya, A. A. Vasil’ev, G. E. Onblogov, and I. V. Tokarev, “Reconstruction of paleoclimate of the Russian Arctic in the Late Neopleistocene–Holocene based on isotope data on polygonal–vein ices,” Kriosfera Zempli 19 (2), 98–106 (2015).

    Google Scholar 

  69. 69

    A. L. Thomas, K. Fujita, Y. Iryu, E. Bard, G. Cabioch, G. Camoin, J. E. Cole, P. Deschamps, N. Durand, B. Hamelin, K. Heindel, G. M. Henderson, A. J. Mason, H. Matsuda, L. Ménabréaz, A. Omori, T. Quinn, S. Sakai, T. Sato, K. Sugihara, Y. Takahashi, N. Thouveny, A. W. Tudhope, J. Webster, H. Westphal, and Y. Yokoyama, “Assessing subsidence rates and paleo water–depths for Tahiti reefs using U–Th chronology of altered corals,” Marine Geol. 295–298, 86–94 (2012).

    Article  Google Scholar 

  70. 70

    W. G. Thompson, M. W. Spiegelman, S. L. Goldstein, and R. C. Speed, “An open-system model for U-series age determinations of fossil corals,” Earth Planet. Sci. Lett. 210 (1–2), 365–381 (2003).

    Article  Google Scholar 

  71. 71

    W. G. Thompson, H. A. Curran, M. A. Wilson, and B. White, “Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals,” Nature Geosci. Lett. 4, 684–687 (2011).

    Article  Google Scholar 

  72. 72

    I. V. Tokarev, “Application of isotope data (δ2H, δ18O, 234U/238U) in studying the permafrost degradation owing to long-term climatic variations,” Zap. Gornoho Inst. 176, 191–195 (2008).

    Google Scholar 

  73. 73

    I. V. Tokarev, A. A. Zubkov, V. G. Rumynin, S. P. Pozdnyakov, V. A. Polyakov, and V. Yu. Kuznetsov, “Assessment of the long-term safety of radioactive waste disposal: 1. Paleoreconstruction of groundwater formation conditions,” Water Res. 36 (2), 206–213 (2009a).

    Article  Google Scholar 

  74. 74

    I. V. Tokarev, A. A. Zubkov, V. G. Rumynin, and S. P. Pozdnyakov, “Assessment of the long-term safety of radioactive waste disposal: 2. Isotopic study of water exchange in a multilayer system,” Water Res. 36 (3), 345–356 (2009b).

    Article  Google Scholar 

  75. 75

    I. V. Tokarev, A. A. Zubkov, V. G. Rumynin, V. A. Polyakov, V. Yu. Kuznetsov, and F. E. Maksimov, “Origin of high 234U/238U ratio in post–permafrost aquifers,” In Uranium in the Environment (Mining Impact and Consequences), Ed. by B. J. Merkel and A. Hasche-Berger (Taylor & Francis, 2006), pp. 847–856.

    Google Scholar 

  76. 76

    Uranium–Series Disequilibrium, Ed. By M. Ivanovich and R. S. Harmon, 2nd ed. (Clarendon Press, Oxford, 1992).

    Google Scholar 

  77. 77

    Y. Yokoyama and T. M. Esat, “Long term variations of uranium isotopes and radiocarbon in the surface seawater recorded in corals,” In Global Environmental Change in the Ocean and on Land, Ed. by M. Shiyomi H. Kawahata, H. Koizumi, A. Tsuda and Y. Awaya (TERRAPUB, Tokyo, 2004), pp. 279–309.

  78. 78

    Y. Yokoyama and T. M. Esat, “Global climate and sea level: Enduring variability and rapid fluctuations over the past 150.000 years,” Oceanography 24 (2), 54–69 (2011).

    Article  Google Scholar 

  79. 79

    Y. Yokoyama, T. M. Esat, and K. Lambeck, “Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the Last Ice Age,” Earth Planet. Sci. Lett. 193, 579–587 (2001).

    Article  Google Scholar 

  80. 80

    S. B. Zykov, G. P. Kiselev, and E. N. Zykova, “New data on uranium-isotope composition of the Barents sea water,” in Radioactivity and Radioactive Elements in the Human Environment, (Tomsk, 2013), pp. 214–217 [in Russian].

  81. 81

    E. N. Zykova and S. B. Zykov, “Variations of isotope composition of surface waters of the Severnaya Dvina River,” Privolzhsk. Nauchn. Ts. 5 (69), 25–29 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.L. Balakina, the head of the Hydrometeorological Department of the Northern UGMS and chief of the R/V Mikhail Somov expedition, for providing favorable conditions for the performance of research works and uninterrupted attention to our studies. We also thank the captain and crew of the R/V Mikhail Somov for the assistance in solving the problems arising during the expedition.

Funding

Expedition works were carried out in the framework of the Transarctica-2019 project.

Analytical works were financially supported by the Russian President Foundation for Support of Young Scientists, project no. МК-1919.2020.5. Data interpretation was supported by the Russian Science Foundation, project no. 20-77-10057.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to I. V. Tokarev or E. Yu. Yakovlev.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokarev, I.V., Yakovlev, E.Y., Zykov, S.B. et al. Disequilibrium Uranium (234U/238U) in Natural Aqueous Objects and Climatic Variations: World Ocean. Geochem. Int. 59, 895–902 (2021). https://doi.org/10.1134/S001670292109007X

Download citation

Keywords:

  • disequilibrium uranium
  • 234U/238U
  • climatic variations
  • permafrost
  • World Ocean