Skip to main content
Log in

Geochemical Patterns of Mud Volcanic Waters: Reviewed Worldwide Data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

This paper is the world’s first to generalize and analyze worldwide data on the chemical composition of waters from 175 onshore mud volcanoes. Empirical probability density functions are obtained for the dominant anions and cations, whose average concentrations (Clarke values) were also estimated. Correlations between the geochemical parameters of the samples (Na and Cl concentrations, Na/Cl ratio and \({\text{HCO}}_{3}^{ - }\) concentration, Cl/Br ratio and Cl concentration, Cl/B ratio and \({\text{HCO}}_{3}^{ - }\) concentration, etc.) were determined and used in the further analysis of conditions under which mud volcanic waters are formed. The waters are mainly slightly alkaline, with mineralization (TDS) in the range of 5 to 25 g/L and mostly belong to the Cl–Na type (about 58%), with waters of the Cl–HCO3–Na (about 23%) and HCO3–Cl–Na (about 12%) types being less common. When mud volcanic chambers are formed, mainly connate (sedimentation–buried seawaters) waters are localized in them. The further evolution of mud volcanic waters is controlled largely by interaction in the water–rock–gas system (in the channel of the mud volcanoes). These interactions involve, first of all, the influx of CO2 in mud volcanoes, hydrolysis of aluminosilicates, sorption–desorption from the exchange complex of clay, smectite illitization, sulfate reduction, and the precipitation of carbonate minerals. Therewith the processes of dilution (with water formed during the dehydration of clay minerals and by meteoric waters) and evaporation are demonstrated to also play important roles. An interplay of all of these processes, whose intensity varies from one mud volcano to another, determines the diversity of the chemical composition of mud volcanic waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. J. Alcalá and E. Custodio, “Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal,” J. Hydrol. 359 (1–2), 189–207 (2008).

    Article  Google Scholar 

  2. A. O. Alekin, Principles of Hydrochemistry (Gidrometeorol. Izd., Leningrad, 1953) [in Russian].

    Google Scholar 

  3. Ad. A. Aliev, I. S. Guliev, F. G. Dadashev, and R. R. Rakhmanov, Atlas of Mud Volcanoes (Nafta–Press, Baku, 2015) [in Russian].

  4. Ad. A. Aliev, V. Yu. Lavrushin, S. V. Kokh, E. V. Sokol and O. L. Petrov, “Isotopic composition of pyritic sulfur from the mud volcanic ejecta in Azerbaijan,” Lithol. Miner. Resour. 52 (5), 358–368 (2017).

  5. M. I. Bujakaite, V. Yu. Lavrushin, B. G. Pokrovsky, O. E. Kikvadze, and B. G. Polyak, “Strontium and oxygen isotopic systems in waters of mud volcanoes of the Taman Peninsula,” Lithol. Miner. Resour. 49 (1), 47–54 (2014).

    Article  Google Scholar 

  6. R. Capozzi and V. Picotti, “Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults,” Terra Nova 14 (5), 363–370 (2002).

    Article  Google Scholar 

  7. H. C. Chao, C. F. You, B. S. Wang, C. H. Chung, and K. F. Huang, “Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones,” Earth Planet. Sci. Lett. 305(1–2), 32–44 (2011).

    Article  Google Scholar 

  8. H. C. Chao, C. F. You, H. C. Liu, and C. H. Chung, “The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions,” Geochim. Cosmochim. Acta 114, 29–51 (2013).

    Article  Google Scholar 

  9. G. A. Chelnokov, R. V. Zharkov, I. V. Bragin, O. V. Veselov, N. A. Kharitonova, and R. B. Shakirov, “Geochemical characteristics of underground fluids in the southern part of the Central Sakhalin Fault,” Tikhookean. Geol. 34 (5), 81–95 (2015).

    Google Scholar 

  10. W.-T. Chen, S.-B. Ho, and D.-Y. Lee, “Effect of pH on boron adsorption–desorption hysteresis of soils,” Soil Sci. 174 (6), 330–338 (2009).

    Article  Google Scholar 

  11. Chernyshevskaya, Z. A. “On mud volcanoes in southern Sakhalin,” Tr. SakhKNII SO AN SSSR, 6, 118–130 (1958).

    Google Scholar 

  12. A. N. Dia, M. Castrec–Rouelle, J. Boulegue, and P. Comeau, “Trinidad mud volcanoes: where do the expelled fluids come from?” Geochim. Cosmochim. Acta 63(7–8), 1023–1038 (1999).

    Article  Google Scholar 

  13. L. I. Dimitrov “Mud volcanoes – the most important pathway for degassing deeply buried sediments,” Earth–Sci. Rev. 59 (1–4), 49–76 (2002).

    Article  Google Scholar 

  14. V. V. Ershov, “On the problem of variability in the chemical composition of mud–volcanic waters: evidence from the Yuzhno-Sakhalinsk mud volcano,” Russ. J. Pac. Geol. 11 (1), 73–80 (2017).

    Article  Google Scholar 

  15. V. V. Ershov, and O. A. Nikitenko, “Isotope and chemical composition of waters of the Yuzhno-Sakhalinsk mud volcano: results of sampling in 2009 and 2010,” Izv. Vyssh. Ucheb. Zaved., Severo-Kavkazsk. Region, 4–1, 110–120 (2017).

  16. V. V. Ershov and B. V. Levin, “New data on the material composition of mud volcano products on Kerch Peninsula,” Dokl. Earth Sci. 471 (1), 1149–1153 (2016).

    Article  Google Scholar 

  17. V. V. Ershov, R. B. Shakirov, and A. I. Obzhirov, “Isotopic–geochemical characteristics of free gases of the South Sakhalin mud volcano and their relationship to regional seismicity,” Dokl. Earth Sci. 440 (2), 1334–1339 (2011).

    Article  Google Scholar 

  18. G. Etiope, A. Feyzullayev, A. V. Milkov, A. Waseda, K. Mizobe, and C. H. Sun, “Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes,” Mar. Petrol. Geol. 26 (9), 1692–1703 (2009).

    Article  Google Scholar 

  19. A. A. Feyzullayev, “The role of pressure in thermocatalytic processes in the sedimentary complex of the south Caspian Basin,” Russ. Geol. Geophys. 54 (2), 262–270 (2013).

    Article  Google Scholar 

  20. R. L. Freed and D. R. Peacor, “Variability in temperature of the smectite–illite reaction in Gulf Coast sediments,” Clay Minerals 24 (2), 171–180 (1989).

    Article  Google Scholar 

  21. S. Goldberg, “Reactions of boron with soils,” Plant Soil 193 (1–2), 35–48 (1997).

    Article  Google Scholar 

  22. R. R. Haese, C. Hensen, and G. J. de Lange, “Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin,” Mar. Geol. 225 (1–4), 191–208 (2006).

    Article  Google Scholar 

  23. Y. Hamada, K. Tanaka, and Y. Miyata, “Geologic structure and geochemistry of Taiwanese mud volcanoes,” J. Geography 118 (3), 408–423 (2009).

    Article  Google Scholar 

  24. C. Hensen, K. Wallmann, M. Schmidt, C. R. Ranero, and E. Suess, “Fluid expulsion related to mud extrusion off Costa Rica – a window to the subducting slab,” Geology 32 (3), 201–204 (2004).

    Article  Google Scholar 

  25. C. Hensen, M. Nuzzo, E. Hornibrook, L. M. Pinheiro, B. Bock, V. H. Magalhães, and W. Brückmann, “Sources of mud volcano fluids in the Gulf of Cadiz – indications for hydrothermal imprint,” Geochim. Cosmochim. Acta 71 (5), 1232–1248 (2007).

    Article  Google Scholar 

  26. M. Hollander and D. Wolfe, Nonparametric Statistical Methods, 3rd. Ed. (Wiley, 2014).

    Google Scholar 

  27. A. Hüpers and A. J. Kopf, “Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: An experimental approach,” Geochem. Geophys. Geosyst. 13 (1), (2012).

  28. Il’ev, A. Ya. S. M. Saprygin, and I. M. Siryk, “1967 Ejection of the Pugachev mud volcano,” Izv. Sakhalin. Otd. Geograf. O-va SSSR 1, 92–99 (1970).

    Google Scholar 

  29. V. N. Kholodov, “Mud volcanoes: distribution and genesis,” Geol. Polezn. Iskop. Mirovogo Okeana 4, 5–27 (2012).

    Google Scholar 

  30. K. Knittel and A. Boetius, “Anaerobic oxidation of methane: progress with an unknown process,” Annu. Rev. Microbiol. 63 (1), 311–334 (2009).

    Article  Google Scholar 

  31. A. Kopf and A. Deyhle “Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling,” Chem. Geol. 192 (3–4), 195–210 (2002).

    Article  Google Scholar 

  32. M. H. Köster, L. B. Williams, P. Kudejova, and H. A. Gilg, “The boron isotope geochemistry of smectites from sodium, magnesium and calcium bentonite deposits,” Chem. Geol. 510, 166–187 (2019).

    Article  Google Scholar 

  33. A. I. Kosygin, “Waters of mud volcanoes of western Turkimenia,” Izv. Akad. Nauk SSSR. Ser. 7: Otd. Matemat. Estestven. Nauk 8–9, 1029–1039.

  34. V. V. Krasintsev, Chlorine and Bromine Hydrogeochemistry (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  35. V. A. Kurishko, I. A. Mesyats, and A. S. Terdovidov, “Hydrogeology of the mud volcanism of the Kerch Peninsula,” Geol. Zh. 28 (1), 49–59 (1968).

    Google Scholar 

  36. I. A. Lagunova and S. D. Gemp, “Hydrogeological features of mud volcanoes,” Sov. Geologiya 8, 108–124 (1978).

    Google Scholar 

  37. V. Yu. Lavrushin, Underground Fluids of the Greater Caucasus and its Surrounding, Ed. By B. G. Polyak (GEOS, Moscow, 2012) [in Russian].

    Google Scholar 

  38. V. Yu. Lavrushin, B. G. Polyak, R. M. Prasolov, and I. L. Kamenskii, “Sources of Material in Mud Volcano Products (Based on Isotopic, Hydrochemical, and Geological Data),” Lithol. Miner. Resour. 31 (6), 557–578 (1996).

    Google Scholar 

  39. V. Yu. Lavrushin, A. Kopf, A. Deyhle, and M. I. Stepanets, “Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): evidence from boron isotopes,” Lithol. Miner. Resour. 38 (2), 120–153 (2003).

    Article  Google Scholar 

  40. V. Yu. Lavrushin, E. O. Dubinina, and A. S. Avdeenko, “Isotopic composition of oxygen and hydrogen in mud-volcanic waters from Taman (Russia) and Kakhetia (Eastern Georgia),” Lithol. Miner. Resour. 40 (2), 123–137 (2005).

    Article  Google Scholar 

  41. V. Yu. Lavrushin, I. S. Guliev, O. E. Kikvadze, Ad. A. Aliev, B. G. Pokrovsky, and B. G. Polyak, “Waters from mud volcanoes of Azerbaijan: isotopic–geochemical properties and generation environments,” Lithol. Miner. Resour. 50 (1), 1–25 (2015).

    Article  Google Scholar 

  42. C. C. Liu, J. S. Jean, B. Nath, M. K. Lee, L. I. Hor, K. H. Lin, and J. P. Maity, “Geochemical characteristics of the fluids and muds from two southern Taiwan mud volcanoes: Implications for water–sediment interaction and groundwater arsenic enrichment,” Appl. Geochem. 24 (9), 1793–1802 (2009).

    Article  Google Scholar 

  43. P. Madonia, F. Grassa, M. Cangemi, and C. Musumeci, “Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity,” Nat. Hazard. Earth. Sys. 11 (5), 1545–1557 (2011).

    Article  Google Scholar 

  44. L. Maignien, R. J. Parkes, B. Cragg, H. Niemann, K. Knittel, S. Coulon, A. Akhmetzhanov, and N. Boon, “Anaerobic oxidation of methane in hypersaline cold seep sediments,” FEMS Microbiol. Ecol. 83 (1), 214–231 (2013).

    Article  Google Scholar 

  45. G. Martinelli and A. Judd, “Mud volcanoes of Italy,” Geol. J. 39 (1), 49–61 (2004).

    Article  Google Scholar 

  46. Mazzini A. and G. Etiope, “Mud volcanism: an updated review,” Earth-Sci. Rev. 168, 81–112 (2017).

    Article  Google Scholar 

  47. A. Mazzini, H. Svensen, S. Planke, I. Guliyev, G. G. Akhmanov, T. Fallik, and D. Banks, “When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan,” Mar. Pet. Geol. 26 (9), 1704–1715 (2009).

    Article  Google Scholar 

  48. J. M. McKinley, R. H. Worden, and A. H. Ruffell, “Smectite in sandstones: a review of the controls on cccurrence and behaviour during diagenesis,” Clay Mineral Cements in Sandstones 34, 109–128 (2003).

    Google Scholar 

  49. O. A. Melnikov, and A. Ya. Il’ev, “New occurrences of mud volcanism on Sakhalin,” Tikhookean. Geol. 3, 42–49 (1989).

    Google Scholar 

  50. A. V. Milkov, “Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs,” Org. Geochem. 42 (2), 184–207 (2011).

    Article  Google Scholar 

  51. A. Minissale, G. Magro, G. Martinelli, O. Vaselli, and G. F. Tassi, “Fluid geochemical transect in the Northern Apennines (central–northern Italy): fluid genesis and migration and tectonic implications,” Tectonophysics 319 (3), 199–222 (2000).

    Article  Google Scholar 

  52. R. J. Motyka, R. J. Pobeda, and A. Jefrey, “Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanoes in the Copper River basin, Alaska,” Geochim. Cosmochim. Acta 53 (1), 29–41 (1989).

    Article  Google Scholar 

  53. R. Nakada, Y. Takahashi, U. Tsunogai, G. Zheng, H. Shimizu, and K. H. Hattori, “A geochemical study on mud volcanoes in the Junggar Basin, China,” Appl. Geochem. 26 (7), 1065–1076 (2011).

    Article  Google Scholar 

  54. G. B. Naumov. B. N. Ryzhenko, and I. L. Khodakovsky, Handbook of Thermodynamic Data (Atomizdat, Moscow, 1971) [in Russian].

    Google Scholar 

  55. O. A. Nikitenko, “Carbonate system of mud volcanic waters by the example of the Yuzhno-Sakhalinsk mud volcano,” Structure of Lithosphere and Geodynamics. Proc. 28 th All-Russian Youth Conference, Irkutsk, Russia, 2019 (Irkutsk, 2019), pp. 119–120.

  56. O. A. Nikitenko, and V. V. Ershov, “Global regularities in the formation of isotope composition (δ18O, δD) of mud volcanic waters,” Vestn. KRAUNTS 34(2), 49–60 (2017).

    Google Scholar 

  57. D. Oppo, R. Capozzi, A. Nigarov, and P. Esenov, “Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan,” Mar. Petrol. Geol. 57, 122–134 (2014).

    Article  Google Scholar 

  58. M. Pennisi, S. Battaglia, and G. Martinelli, “Mineralogy and boron geochemistry of mud volcanoes from Northern Apennines (Italy),” Mineral. Mag. 77, 1947 (2013).

    Google Scholar 

  59. A. M. Pytte and R. C. Reynolds “The thermal transformation of smectite to illite,” Thermal History of Sedimentary Basins, Methods and Case Histories (Springer–Verlag, New York, 1989), pp. 133–140.

    Google Scholar 

  60. S. J. Ray, A. Kumar, A. K. Sudheer, R. D. Deshpande, D. K. Rao, D. J. Patil, N. Awasthi, R. Bhutani, R. Bhushan, and A. M. Dayal, “Origin of gases and water in mud volcanoes of Andaman accretionary prism: implications for fluid migration in forearcs,” Chem. Geol. 347, 102–113 (2013).

    Article  Google Scholar 

  61. G. Ren, A. Ma, Y. Zhang, Y. Deng, G. Zheng, X. Zhuang, G. Zhuang, and D. Fortin, “Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes,” Environ. Microbiol. 20 (7), 2370–2385 (2018).

    Article  Google Scholar 

  62. S. A. Shchukarev, “An attempt of general review of Georgian waters from the geochemical point of vies,” Tr. Gos. Tsentral. Inst. Kurortologii 5, 159–167 (1934).

    Google Scholar 

  63. V. N. Shilov, M. A. Zakharov, A. Ya. Il’ev, and A. V. Podzorov, “Eruption of mud volcano in Spring, 1959,” Tr. SakhKNII So AN SSSR 10, 83–99 (1961).

    Google Scholar 

  64. S. L. Shvartsev, General Hydrogeology (Nedra, Moscow, 1996) [in Russian].

    Google Scholar 

  65. I. M. Siryk, Petroleum Potential of the Eastern Slopes of the Western Sakhalin Mountains (Nauka, Moscow, 1968) [in Russian]

    Google Scholar 

  66. E. V. Sokol, S. N. Kokh, O. A. Kozmenko, V. Yu. Lavrushin, E. V. Belogub, P. V. Khvorov, and O. E. Kikvadze, “Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone,” Chem. Geol. 525, 58–81 (2019).

    Article  Google Scholar 

  67. J. Strydom, H. Eggenkamp, J. Sterpenich, P. Agrinier, A. Richard, D. Grgic, P. Gaire, R. Mosser–Ruck, and E. C. Gaucher, “Cl/Br and δ37Cl evolution in seawater expelled during the compaction of MX–80 smectite,” E3S Web of Conferences 98, (2019).

  68. G. V. Voitkevich, A. V. Kokin, A. E. Miroshnikov, and V. G. Prokhorov, Reference Book on Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  69. C. Wrede, S. Brady, S. Rockstroh, A. Dreier, S. Kokoschka, S. M. Heinzelmann, C. Heller, J. Reitner, M. Taviani, R. Daniel, and M. Hoppert, “Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines,” Sediment. Geol. 263–264, 210–219 (2012).

    Article  Google Scholar 

  70. A. A. Yakubov and Ad. A. Aliev, Mud Volcanoes (Znanie, Moscow, 1978) [in Russian]

  71. A. A. Yakubov, B. V. Grigor’yants, Ad. A. Aliev, A. D. Babazade, M. M. Veliev, Ya. A. Gadzhiev, I. G. Guseinadze, A. Ya. Kabulova, N. S. Kastryulin, F. A. Matanov, M. G. Mustafaev, R. R. Rakhmanov, O. B. Safarova, and A. G. Seidov, Mud Volcanism of the Soviet Union and its Relation with Petroleum Potential (ELM, Baku, 1980) [in Russian].

    Google Scholar 

  72. C. F. You, A. J. Spivack, J. M. Gieskes, R. Rosenbauer, and J. L. Bischoff, “Experimental study of boron geochemistry: implications for fluid processes in subduction zones,” Geochim. Cosmochim. Acta 59(12), 2435–2442 (1995).

    Article  Google Scholar 

  73. C. F. You, J. M. Gieskes, T. Lee, T. F. Yuic, and H. W. Chen, “Geochemistry of mud volcano fluids in the Taiwan accretionary prism,” Appl. Geochem. 19 (5), 695–707 (2004).

    Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR (Russian Foundation for Basic Research), project number 19-15-50133 Expansion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Nikitenko or V. V. Ershov.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitenko, O.A., Ershov, V.V. Geochemical Patterns of Mud Volcanic Waters: Reviewed Worldwide Data. Geochem. Int. 59, 922–937 (2021). https://doi.org/10.1134/S0016702921090044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921090044

Keywords:

Navigation