Skip to main content

Thermodynamic Analysis of Reactions of CO2 Fluid with Garnet and Clinopyroxene at 3–6 GPa

Abstract—

Diamond-hosted inclusions provide information on the composition of the upper mantle. Many researchers found molecular CO2 inclusions, along with mineral and melt ones, in diamonds. Available experimental data on simplified systems suggest that CO2 fluid cannot occur in equilibrium with rock-forming mantle minerals. However, it was suggested that the complex composition of minerals contributes to their stabilization. This paper presents thermodynamic calculations for reactions of diopside–jadeite and pyrope–grossular solid solutions with CO2. It is shown that the formation of the solid solutions expands the stability field of CO2 fluid with eclogite minerals to lower temperatures, corresponding to the geothermal parameters of the continental lithosphere. The obtained relationships are confirmed by the results of preliminary experiments with model mixtures at high pressures and temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Y. V. Bataleva, A. N. Kruk, I. D. Novoselov, O. V. Furman, and Y. N. Palyanov, “Decarbonation reactions involving ankerite and dolomite under upper mantle P, T–parameters: Experimental modeling,” Minerals 10 (8), 715 (2020a).

    Article  Google Scholar 

  2. 2

    Yu. V. Bataleva, I. D. Novoselov, A. N. Kruk, O. V. Furman, V. N. Reutsky, and Yu. N. Palyanov, “Experimental modeling of decarbonation resulting in Mg,Fe-garnets and CO2–fluid at the mantle P, T–parameters,” Russ. Geol. Geophys. 61 (S5–6), 650–662 (2020).

  3. 3

    R. G. Berman, “Thermobarometry using multi–equilibrium calculations: a new technique with petrological application,” Can. Mineral. 29 (4), 833–855 (1991).

    Google Scholar 

  4. 4

    I. L. Chinn, “Cathodoluminescence properties of CO2–bearing and CO2–free diamonds from the George Creek K1 Kimberlite dyke,” Int. Geol. Rev. 37(3), 254–258 (1995).

    Article  Google Scholar 

  5. 5

    J. A. Dalton and D. C. Presnall, “Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa,” Contrib. Mineral. Petrol. 131, 123–135 (1998).

    Article  Google Scholar 

  6. 6

    T. Gasparik, “Experimentally determined compositions of diopside–jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar,” Geochim. Cosmochim. Acta 3 (49), 865–870 (1985).

    Article  Google Scholar 

  7. 7

    G. D. Guthrie, D. R. Veblen, O. Navon, and G. R. Rossman, “Submicrometer fluid inclusions in turbid–diamond coats,” Earth Planet. Sci. Lett. 105 (1–3), 1–12 (1991).

    Article  Google Scholar 

  8. 8

    T. Holland and R. Powell “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16 (3), 309–343 (1998).

    Article  Google Scholar 

  9. 9

    T. Holland and R. Powell, “Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation,” Contrib. Mineral. Petrol. 145, 492–501 (2003).

    Article  Google Scholar 

  10. 10

    C. S. Kennedy and G. C. Kennedy, “The equilibrium boundary between graphite and diamond,” J. Geophys. Res. 81 (14), 2467–2470 (1976).

    Article  Google Scholar 

  11. 11

    R. Knoche, R. J. Sweeney, and R. W. Luth, “Carbonation and decarbonation of eclogites: the role of garnet,” Contrib Mineral. Petrol. 135(4), 332–339 (1999).

    Article  Google Scholar 

  12. 12

    A. M. Koziol and R. C. Newton, “Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO2 in the ranges 6–25 kbar and 700–1100°C,” Am. Mineral. 83 (3–4), 213–219 (1998).

    Article  Google Scholar 

  13. 13

    K. D. Litasov, “Physochemical conditions for melting in the Earth’s mantle containing a C–O–H–fluid (from experimental data),” Russ. Geol. Geophys. 52 (5), 475–492 (2011).

    Article  Google Scholar 

  14. 14

    K. D. Litasov and A. F. Shatskiy, “MgCO3 + SiO2 reaction at pressures up to 32 GPa studied using in–situ X–ray diffraction and synchrotron radiation,” Geochem. Int. 57 (9), 1024–1033 (2019).

    Article  Google Scholar 

  15. 15

    R. W. Luth, “Experimental determination of the reaction dolomite + 2 coesite = diopside + 2 CO2 to 6 GPa,” Contrib. Mineral. Petrol. 122 (1–2), 152–158 (1995).

    Article  Google Scholar 

  16. 16

    O. Navon, I. Hutcheon, G. Rossman, and G. Wasserburg, “Mantle-derived fluids in diamond micro–inclusions,” Nature 335 (6193), 784–789 (1988).

    Article  Google Scholar 

  17. 17

    A. Navrotsky, “Models of crystalline solutions,” In Thermodynamic Modeling of Geologic Materials: Minerals, Fluids, and Melts, Ed. by I. S. E. Carmichael and H. Eugster, (De Gruyter, 1987).

    Google Scholar 

  18. 18

    I. V. Podborodnikov, A. Shatskiy, A. V. Arefiev, A. Bekhtenova, and K. D. Litasov, “New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere,” Chem. Geol. 515, 50–60 (2019).

    Article  Google Scholar 

  19. 19

    I. V. Podborodnikov, A. Shatskiy, A. V. Arefiev, and K. D. Litasov, “Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution,” Lithos 330–331, 74–89 (2019a).

    Article  Google Scholar 

  20. 20

    N. P. Pokhilenko, A. M. Agashev, K. D. Litasov, and L. N. Pokhilenko, “Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite–kimberlite magmatism,” Russ. Geol. Geophys. 56 (1–2), 280–295 (2015).

    Article  Google Scholar 

  21. 21

    H. N. Pollack and D. S. Chapman, “On the regional variation of heat flow, geotherms, and lithospheric thickness,” Tectonophysics 38, 279–296 (1977).

    Article  Google Scholar 

  22. 22

    A. L. Ragozin, V. S. Shatsky, G. M. Rylov, and S. V. Goryainov, “Coesite inclusions in rounded diamonds from placers of the northeastern siberian platform,” Dokl. Earth Sci. 384 (4), 385–389 (2002).

    Google Scholar 

  23. 23

    A. L. Ragozin, V. S. Shatskii, and D. A. Zedgenizov, “New data on the growth environment of diamonds of the Variety V from placers of the northeastern Siberian Platform,” Dokl. Earth Sci. 425 (4), 527–531 (2009).

    Article  Google Scholar 

  24. 24

    A. L. Ragozin, D. A. Zedgenizov, K. E. Kuper, and V. S. Shatsky, “Radial mosaic internal structure of rounded diamond crystals from alluvial placers of Siberian platform,” Mineral. Petrol. 110(6), 861–875 (2016).

    Article  Google Scholar 

  25. 25

    M. Schrauder and O. Navon, “Solid carbon dioxide in natural diamond,” Nature 365 (6441), 42–44 (1993).

    Article  Google Scholar 

  26. 26

    I. S. Sharygin, K. D. Litasov, A. F. Shatskiy, A. V. Golovin, E. Ohtani, and N. P. Pokhilenko, “Melting phase relations of the Udachnaya–East Group–I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali–carbonatite composition of primary kimberlite melt and implication to mantle plumes,” Gondwana Res. 28 (4), 1391–1414 (2015).

    Article  Google Scholar 

  27. 27

    I. S. Sharygin, K. D. Litasov, A. Shatskiy, O. G. Safonov, A. V. Golovin, E. Ohtani, and N. P. Pokhilenko, “Experimental constraints on orthopyroxene dissolution in alkali carbonate melts in the lithospheric mantle: implications for kimberlite melt composition and ascent,” Chem. Geol. 455, 44–55 (2017).

    Article  Google Scholar 

  28. 28

    A. Shatskiy, K. D. Litasov, I. S. Sharygin, I. A. Egonin, A. M. Mironov, Y. N. Palyanov, and E. Ohtani, “The system Na2CO3–CaCO3–MgCO3 at 6 GPa and 900–1250°C and its relation to the partial melting of carbonated mantle,” High Pressure Res. 36 (1), 23–41 (2016).

    Article  Google Scholar 

  29. 29

    A. Shatskiy, I. V. Podborodnikov, A. V. Arefiev, K. D. Litasov, A. D. Chanyshev, I. S. Sharygin, N. S. Karmanov, and E. Ohtani, “Effect of alkalis on the reaction of clinopyroxene with Mg–carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite,” Am. Mineral. 102 (9), 1934–1946 (2017a).

    Article  Google Scholar 

  30. 30

    A. Shatskiy, K. D. Litasov, I. S. Sharygin, and E. Ohtani, “Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya–East kimberlite with variable CO2 content at 6.5 GPa,” Gondwana Res. 45, 208–227 (2017).

    Article  Google Scholar 

  31. 31

    E. M. Smith, M. G. Kopylova, M. L. Frezzotti, and V. P. Afanasiev, “Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit,” Lithos 216, 106–117 (2015).

    Article  Google Scholar 

  32. 32

    A. A. Tomilenko, A. L. Ragozin, V. S. Shatskii, and A. P. Shebanin, “Variation in the fluid phase composition in the process of natural diamond crystallization,” Dokl. Earth Sci, 378 (6), 802–805 (2001).

    Google Scholar 

  33. 33

    B. J. Wood, T. Holland, R. C. Newton, and O. J. Kleppa, “Thermochemistry of jadeite–diopside pyroxenes,” Geochim. Cosmochim. Acta. 9 (44), 1363–1371 (1980).

    Article  Google Scholar 

  34. 34

    P. J. Wyllie and W. Huang, “Peridotite, kimberlite, and carbonatite explained in the system CaO–MgO–SiO2–CO2,” Geology 3, 621–624 (1975).

    Article  Google Scholar 

  35. 35

    G. M. Yaxley and G. P. Brey, “Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites,” Contrib. Mineral. Petrol. 146 (5), 606–619 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study on a scanning electron microscope was carried out at the Center for Collective Use for Multielemental and Isotope Studies of the Siberian Branch, Russian Academy of Sciences.

Funding

This study was done on the state assignment for the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research, project no. 21-55-14001. KDL was supported by the state assignment for the Institute for High Pressure Physics, Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. G. Vinogradova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, Y.G., Shatskiy, A.F. & Litasov, K.D. Thermodynamic Analysis of Reactions of CO2 Fluid with Garnet and Clinopyroxene at 3–6 GPa. Geochem. Int. 59, 851–857 (2021). https://doi.org/10.1134/S0016702921080103

Download citation

Keywords:

  • thermodynamic calculations
  • CO2 fluid
  • pyrope
  • grossular
  • diopside
  • jadeite
  • upper mantle
  • diamond