Skip to main content

Composition of Volatiles Captured by Diamonds during Growth in the Metal–Carbon–Silicate System at High Pressure and High Temperature


The paper addresses a fluid phase conserved in inclusions in diamond, which were synthesized in the metal–carbon system in the presence of silicate material at 5.5 GPa and 1500°C. Natural olivine and alkaline basaltic glass were used as silicate material. It was found that the diamonds contain 130 different volatile compounds dominated by medium (С5–С12) and heavy (С13–С18) aliphatic hydrocarbons, which correspond to the presence of a highly reducing fluid in the crystallization medium. The comparison of obtained data with composition of fluid inclusions, which were found in natural diamonds and contain significant amount of medium and heavy aliphatic hydrocarbons of the С5–С18 series, indicates that some natural diamonds could be formed in highly reducing mantle conditions in the presence of metal liquids.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.


  1. 1

    A. V. Bobrov and Yu. A. Litvin, “Mineral equilibria of diamond-forming carbonate–silicate systems,” Geochem. Int. 49 (13), 1267–1363 (2011).

    Article  Google Scholar 

  2. 2

    T. A. Bul’bak, A. A. Tomilenko, N. A. Gubsher, A. M. Sazonov, E. O. Shaparenko, M. A. Ryabukha, M. O. Khomenko, S. A. Sil’yanov, and N. A. Nekrasova, “Hydrocarbons in fluid inclusions from native gold, pyrite, and quartz of the Sovetskoe deposit (Yenisei Ridge, Russia) according to pyrolysis-free gas chromatography-mass spectrometry data,” Russ. Geol. Geophys. 61 (11), 1260–1282 (2020).

    Article  Google Scholar 

  3. 3

    A. I. Chepurov, “Role of sulfide melt in natural diamond formation,” Geol. Geofiz., No. 8,119–124 (1988).

  4. 4

    A. I. Chepurov, A. A. Tomilenko, A. P. Shebanin, and N. V. Sobolev, “Fluid inclusions in natural diamonds from Yakutian placers,” Dokl. Akad. Nauk SSSR 336 (5), 662–665 (1994).

    Google Scholar 

  5. 5

    A. I. Chepurov, V. M. Sonin, E. I. Zhimulev, A. A. Chepurov, and A. A. Tomilenko, “On the formation of element carbon during decomposition of CaCO3 at high PT parameters under reducing conditions,” Dokl. Earth. Sci. 441 (2), 1738–1741 (2011).

    Article  Google Scholar 

  6. 6

    A. I. Chepurov, V. M. Sonin, J. M. Dereppe, E. I. Zhimulev, and A. I. Chepurov, “How do diamonds grow in metal melt together with silicate minerals? An experimental study of diamond morphology,” Eur. J. Mineral. 32, 41–55 (2020).

    Article  Google Scholar 

  7. 7

    H. W. Day, “A revised diamond–graphite transition curve,” Am. Mineral. 97, 52–62 (2012).

    Article  Google Scholar 

  8. 8

    J. Dubessy, B. Poty, and C. Ramboz, “Advances in C–O–H–N–S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions,” Eur. J. Miner. 1, 517–534 (1989).

    Article  Google Scholar 

  9. 9

    I. I. Fedorov, A. I. Chepurov, A. A. Chepurov, and A. V. Kuroedov, “Estimation of the rate of postcrystallization self–purification of diamond from metal inclusions in the earth’s mantle,” Geochem. Int. 43 (12), 1235–1239 (2005).

    Google Scholar 

  10. 10

    I. I. Fedorov, A. I. Chepurov, V. M. Sonin, A. A. Chepurov, and A. M. Logvinova, “Experimental and thermodynamic study of the crystallization of diamond and silicates in a metal–silicate–carbon system,” Geochem. Int. 46 (4), 340–350 (2008).

    Article  Google Scholar 

  11. 11

    M. L. Frezzotti, F. Tecce, and A. Casagli, “Raman spectroscopy for fluid inclusion analysis,” J. Geochem. Explor. 112, 1–20 (2012).

    Article  Google Scholar 

  12. 12

    R. Kaindl, P. Tropper, and I. Deibla, “A semi-quantitative technique for determination of CO2 in cordierite by Raman spectroscopy in thin sections,” Eur. J. Mineral. 18, 331–335 (2006).

    Article  Google Scholar 

  13. 13

    R. Kaindl, D. Többens, and U. Haefeker, “Quantum-mechanical calculations of the Raman spectra of Mg– and Fe–cordierite,” Am. Mineral. 96, 1568–1574 (2011).

    Article  Google Scholar 

  14. 14

    A. Y. Kolesnikov, J. M. Saul, V. G. Kutcherov, “Chemistry of hydrocarbons under extreme thermobaric conditions,” ChemistrySelect. 2, 1336–1352 (2017).

    Article  Google Scholar 

  15. 15

    P. Nimis, M. Alvaro, F. Nestola, R. J. Angel, K. Marquardt, G. Rustioni, J. W. Harris, and F. Marone, “First evidence of hydrous silicic fluid films around solid inclusions in gem quality diamonds,” Lithos 260, 384–389 (2016).

    Article  Google Scholar 

  16. 16

    N. Yu. Osorgin, Yu. N. Palyanov, N. V. Sobolev, I. P. Khokhryakova, A. I. Chepurov, and N. A. Shugurova, “Inclusions of liquified gases in diamond crystals,” Dokl. Akad. Nauk SSSR 293 (5), 1214–1217 (1987).

    Google Scholar 

  17. 17

    E. Roedder, Fluid Inclusions, Rev. Mineral. (Mineralogical Society of America, Washington, 1984).

    Book  Google Scholar 

  18. 18

    M. A. Sephton and R. M. Hazen, “On the origins of deep hydrocarbons,” Rev. Mineral. Geochem. 75, 449–465 (2013).

    Article  Google Scholar 

  19. 19

    S. B. Shirey, P. Cartigny, D. J. Frost, S. Keshav, F. Nestola, P. Nimis, D. G. Pearson, N. V. Sobolev, and M. J. Walter, “Diamonds and the geology of mantle carbon,” Rev. Mineral. Geochem. 75 (1), 355–421 (2013).

    Article  Google Scholar 

  20. 20

    E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, and W. Wang, “Large gem diamonds from metallic liquid in Earth’s deep mantle,” Science 35, 403–1405 (2016).

    Google Scholar 

  21. 21

    N. V. Sobolev, B. A. Fursenko, S. V. Goryainov, J. Shu, R. J. Hemley, H. K. Mao, and F. R. Boyd, “Fossilized high pressure from the Earth’s deep interior: coesite-in-diamond barometer,” Proc. Natl. Acad. Sci. USA. 97 (22), 11875–11879 (2000).

    Article  Google Scholar 

  22. 22

    N. V. Sobolev, A. V. Sobolev, A. A. Tomilenko, D. V. Kuzmin, S. A. Grakhanov, V. G. Batanova, A. M. Logvinova, T. A. Bul’bak, S. I. Kostrovitsky, D. A. Yakovlev, E. N. Fedorova, G. F. Anastasenko, E. I. Nikolaenko, A. V. Tolstov, and V. N. Reutsky, “Prospects of search for diamondiferous kimberlites in the northeastern Siberian Platform,” Russ. Geol. Geophys. 59 (10), 1365–1379 (2018).

    Article  Google Scholar 

  23. 23

    N. V. Sobolev, A. M. Logvinova, A. A. Tomilenko, R. Wirth, T. A. Bul’bak, L. I. Luk’yanova, E. N. Fedorova, V. N. Reutsky, and E. S. Efimova, “Mineral and fluid inclusions in diamonds from the Urals placers, Russia: Evidence for solid molecular N2 and hydrocarbons in fluid inclusions,” Geochim. Cosmochim. Acta 266, 197–219 (2019a).

    Article  Google Scholar 

  24. 24

    N. V. Sobolev, A. A. Tomilenko, T. A. Bul’bak, and A. M. Logvinova, “Composition of hydrocarbons in diamonds, garnet and olivine from diamondiferous peridotites from Udachnaya pipe in Yakutia, Russia,” Engineering 5, 451–478 (2019b).

    Article  Google Scholar 

  25. 25

    A. G. Sokol, A. A. Tomilenko, T. A. Bul’bak, G. A. Palyanova, I. A. Sokol, and Y. N. Palyanov, “Carbon and nitrogen speciation in N-poor C–O–H–N fluids at 6.3 GPa and 1100–1400°C,” Sci. Rep. 7 (1), 00679 (2017).

    Article  Google Scholar 

  26. 26

    V. M. Sonin, T. A. Bul’bak, E. I. Zhimulev, A. A. Tomilenko, A. I. Chepurov, and N. P. Pokhilenko, “Synthesis of heavy hydrocarbons under P–T conditions of the Earth’s upper mantle,” Dokl. Earth Sci. 454 (1), 32–36 (2014).

    Article  Google Scholar 

  27. 27

    V. M. Sonin, M. Leech, A. A. Chepurov, E. I. Zhimulev, and A. I. Chepurov, “Why are diamonds preserved in UHP metamorphic complexes? Experimental evidence for the effect of pressure on diamond graphitization,” Int. Geol. Rev. 61 (4), 504–519 (2019).

    Article  Google Scholar 

  28. 28

    A. A. Tomilenko, A. I. Chepurov, Yu. N. Palyanov, L. N. Pokhlenko, and A. P. Shebanin, “Volatile components in the upper mantle (from date on fluid inclusions),” Russ. Geol. Geophys. 38 (1), 294–303 (1997).

    Google Scholar 

  29. 29

    A. A. Tomilenko, A. I. Chepurov, Y. N. Pal’yanov, A. P. Shebanin, and N. V. Sobolev, “Hydrocarbon inclusions in synthetic diamonds,” Eur. J. Mineral. 10, 1135–1141 (1998).

    Article  Google Scholar 

  30. 30

    A. A. Tomilenko, A. L. Ragozin, V. S. Shatskii, and A. P. Shebanin, “Variation in the fluid phase composition in the process of natural diamond crystallization,” Dokl. Earth Sci. 378 (6), 571–577 (2001).

    Google Scholar 

  31. 31

    A. A. Tomilenko, A. I. Chepurov, V. M. Sonin, T. A. Bul’bak, E. I. Zhimulev, A. A. Chepurov, T. Yu. Timina, and N. P. Pokhilenko, “The synthesis of methane and heavier hydrocarbons in the system graphite–iron–serpentine at 2 and 4 GPa and 1200°C,” High Temp. High Press. 44, 451–465 (2015).

    Google Scholar 

  32. 32

    A. A. Tomilenko, T. A. Bul’bak, L. N. Pokhilenko, D. V. Kuzmin and N. V. Sobolev, “Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography–mass spectrometry),” Dokl. Earth Sci. 469 (1), 690–694 (2016a).

    Article  Google Scholar 

  33. 33

    A. A. Tomilenko, T. A. Bul’bak, M. O. Khomenko, D. V. Kuzmin, and N. V. Sobolev, “The composition of volatile components in olivines from Yakutian kimberlites of various ages: evidence from gas chromatography–mass spectrometry,” Dokl. Earth Sci. 468 (2), 626–632 (2016b).

    Article  Google Scholar 

  34. 34

    A. A. Tomilenko, T. A. Bul’bak, A. I. Chepurov, V. M. Sonin, E. I. Zhimulev and N. P. Pokhilenko, “Composition of hydrocarbons in synthetic diamonds grown in a Fe–Ni–C system (according to gas chromatography–mass spectrometry data),” Dokl. Earth Sci. 481 (2), 1004–1007 (2018a).

    Article  Google Scholar 

  35. 35

    A. A. Tomilenko, T. A. Bul’bak, A. M. Logvinova, V. M. Sonin, and N. V. Sobolev, “The composition features of volatile components in diamonds from the placers in the northeastern part of the Siberian Platform by gas chromatography–mass spectrometry,” Dokl. Earth Sci. 481 (3), 953–957 (2018b).

    Article  Google Scholar 

  36. 36

    A. I. Turkin, “Lead selenide as a continuous internal indicator of pressure in solid-media cells of high-pressure apparatus in the range of 4–6.8 GPa,” High Temp. High Press. 35/36, 371–376 (2003).

    Article  Google Scholar 

  37. 37

    Y. Weiss, I. Kiflawi, N. Davis, and O. Navon, “High-density fluids and growth of monocrystalline diamonds,” Geochim. Cosmochim. Acta 141, 145–159 (2014).

    Article  Google Scholar 

  38. 38

    R. H. Wentorf, “Solutions of carbon at high pressure,” Ber. Der Bunsengesells. 70, 975–982 (1966).

    Google Scholar 

Download references


We are grateful to A.V. Bobrov for his invitation to this special issue. Two anonymous reviewers are thanked for useful critical comments.

Microimages of diamond crystals were obtained using Nanostructure Center for Collective Use.


Gas chromatography–mass spectrometry studies were made with financial support of the Russian Science Foundation (project no. 19-17-00128). Raman spectroscopy of phases was conducted in the framework of the Russian Foundation for Basic Research (project no. 18–05–00761).

Author information



Corresponding author

Correspondence to A. A. Chepurov.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomilenko, A.A., Chepurov, A.A., Sonin, V.M. et al. Composition of Volatiles Captured by Diamonds during Growth in the Metal–Carbon–Silicate System at High Pressure and High Temperature. Geochem. Int. 59, 840–850 (2021).

Download citation


  • diamond
  • high pressure
  • high temperature
  • gas chromatogramphy–mass spectrometry
  • experiment