Skip to main content
Log in

Petrogenesis of Garnet-Bearing Carbonatite in the Tromsø Nappe, Norway

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper presents data on phase relations in garnet-bearing carbonatite from the Tromsø Nappe, Norway. The carbonatite matrix consists of calcite–dolomite carbonate with three generations of garnet inclusions (up to 15–20%). The relics of the primary garnets (Grt1) are depleted (<10–2 wt %) in the rare earth elements (REE). The garnet of the second and third generations (Grt2–3) is anomalously enriched (up to 10–15 wt %) in the light REE (LREE), and the carbonates are depleted in these elements. The distribution of REE between the garnet and carbonate indicates the absence of equilibrium. The melting of the carbonatite at T = 950–1400°C, P = 4.0 GPa showed that the “dry” solidus temperature is 1150°C, and the liquidus temperature is >1300°C. In the experiment with H2O + CO2 fluid, the solidus and liquidus temperatures are ≤950 and 1250°C, respectively. The subsolidus association is calcite, garnet, clinopyroxene, biotite, and accessory minerals: apatite, ilmenite, rutile, and titanite. The garnet and carbonatite melt occur in reaction relationships, as is evident from the garnet zoning with a decrease in the FeO and increase in the MgO, CaO, TiO2, and LREE concentrations. The geological setting, phase relationships, and experimental data indicate that the garnet-bearing carbonatites in the Tromsø area were formed in relation to the carbonatization and melting of upper mantle material at high pressures during the collision of the Baltica and Laurentia plates in the course of the Caledonian orogenesis, with subsequent intrusion and crystallization of silicate–carbonate magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. K. Bell and G. R. Tilton, “Nd, Pb and Sr isotopic compositions of east African carbonatites: evidence for mantle mixing and plume inhomogeneity,” J. Petrol. 42, 1927–1945 (2001). https://doi.org/10.1093/petrology

    Article  Google Scholar 

  2. K. Bell and G. R. Tilton, “Probing the mantle: the story from carbonatites,” Eos Trans. Am. Geophys. Union. 83 (273), 276–277 (2002).

    Article  Google Scholar 

  3. K. Bell and A. Simonetti, “Source of parental melts to carbonatites–critical isotopic constraints,” Mineral Petrol. 98, 77–89 (2010). https://doi.org/10.1007/s00710-009-0059-0

    Article  Google Scholar 

  4. O. A. Bogatikov, V. I. Kovalenko, and E. V. Sharkov, Magmatism, Tectonics, and Geodynamics of the Earth (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  5. I. Broska, E. J. K. Ravna, P. Vojtko, K. M. Jana, P. Konecny, M. Pentrak, P. Bacik, J. Luptakova, and K. Kullerud, “Oriented inclusions in apatite in a post-UHP fluid–mediated regime (Tromsø Nappe, Norway),” Europ. J. Mineral. 26, 623–634 (2014).

    Article  Google Scholar 

  6. F. Corfu, E. J. K. Ravna, and K. Kullerud, “A late Ordovician U-Pb age for the Tromsø Nappe eclogites, uppermost allochthon of the Scandinavian Caledonides,” Contrib. Mineral. Petrol. 145, 502–513 (2003).

    Article  Google Scholar 

  7. R. Dasgupta, M. M. Hirschmann, W. F. McDonough, M. Spiegelman, and A. C. Withers, “Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts,” Chem. Geol. 262, 57–77 (2009).

    Article  Google Scholar 

  8. N. L. Dobretsov, D. A. Zedgenizov, and K. D. Litasov, “Evidence for and consequences of the “hot” subduction model,” Dokl. Earth Sci. 462 (1), 517–521 (2015).

    Article  Google Scholar 

  9. K. Fassmer, I. Martinet, I. Miladinova, P. Sprung, N. Froitzheim, R. O. C. Fonseca, C. Münker, M. Janák, and K. Kullerud, “Lu-Hf geochronology of ultra-high pressure eclogites from the Tromsø–Nappe, Scandinavian Caledonides: evidence for rapid subduction and exhumation,” Int. J. Earth Sci. 109, 1727–1742 (2020).

    Article  Google Scholar 

  10. A. A. Frolov, A. V. Tolstov, and S. V. Belov, Carbonatite Deposits of Russia (NIA–Priroda, Moscow, 2003) [in Russian].

    Google Scholar 

  11. D. G. Gee, H. Fossen, N. Henriksen, and A. K. Higgins, “From the early Paleozoic platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland,” Episodes 31, 44–51 (2008).

    Article  Google Scholar 

  12. A. V. Girnis, V. K. Bulatov, Y. Lahaye, and G. P. Brey, “Partitioning of trace elements between carbonate–silicate melts and mantle minerals: experiment and petrological consequences,” Petrology 14 (5), 492–514 (2006).

    Article  Google Scholar 

  13. A. V. Girnis, V. K. Bulatov, G. P. Brey, A. Gerdes, and H. E. Hofer, “Trace element partitioning between mantle minerals and silico–carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis,” Lithos 160–161, 183–200 (2013).

    Article  Google Scholar 

  14. N. S. Gorbachev, “Fluid–magma interaction in sulfide–silicate systems,” Int. Geol. Rev. 32 (8), 749–831 (1990).

    Article  Google Scholar 

  15. N. S. Gorbachev and A. V. Kostyuk, “Distribution of rare and rare earth elements between Grt, Cpx and Cb at mantle PT (from experimental data),” Exp. Geochem. 2 (2), 70–72 (2014).

    Google Scholar 

  16. E. S. Izraeli, J. W. Harris, and O. Navon, “Brine inclusions in diamonds: A new upper mantle fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  17. M. Janák, E. J. K. Ravna, and K. Kullerud, “Constraining peak P–T conditions in UHP eclogites: Calculated phase equilibria in kyanite- and phengite-bearing eclogite of the Tromsø Nappe, Norway,” J Metamorphic Geol. 30, 377–396 (2012).

    Article  Google Scholar 

  18. M. Janák, E. J. Krogh Ravna, K. Kullerud, K. Yoshida, R. Milovský, and T. Hirajima, “Discovery of diamond in the Tromsø Nappe, Scandinavian Caledonides (N. Norway),” J. Metamorph. Geol. 31, 691–703 (2013).

    Article  Google Scholar 

  19. A. V. Korsakov and J. Hermann, “Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks,” Earth Planet. Sci. Lett. 241, 104–118 (2006).

    Article  Google Scholar 

  20. Yu. A. Litvin, Physicochemical Studies of Melting of materials from the Deep Earth (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  21. W. F. McDonough and S. Sun “The composition of the Earth,” Chem Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  22. A. L. Perchuk, V. V. Davydova, M. Burchard, W. V. Maresch, H.-P. Schertl, V. O. Yapaskurt, and O. G. Safonov, “Modification of mineral inclusions in garnet under high-pressure conditions: experimental simulation and application to the carbonate–silciate rocks of the Kokchetav massif,” Russ. Geol. Geophys. 50 (12), 1153–1168 (2009).

    Article  Google Scholar 

  23. I. V. Podborodnikov, A. Shatskiy, A. V. Arefiev, and K. D. Litasov, “Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution,” Lithos 330–331, 74–89 (2019).

    Article  Google Scholar 

  24. E. J. K. Ravna and M. R. M. Roux, “Metamorphic evolution of the Tønsvika eclogite, Tromsø Nappe—Evidence for a new UHPM province in the Scandinavian Caledonides,” Int. Geol. Rev. 48, 861–881 (2006).

    Article  Google Scholar 

  25. E. J. K. Ravna, K. Kullerud, and E. Ellingsen, “Prograde garnet-bearing ultramafic rocks from the Tromsø Nappe, northern Scandinavian Caledonides,” Lithos 92, 336–356 (2006).

    Article  Google Scholar 

  26. E. J. K. Ravna, D. Zozulya, K. Kullerud, F. Corfu, P. I. Nabelek, M. Janák, T. Slagstad, B. Davidsen, R. S. Selbekk, and H. P. Schertl, “Deep-seated carbonatite intrusion and metasomatism in the UHP Tromsø Nappe, northern Scandinavian Caledonides–a natural example of generation of carbonatite from carbonated eclogite,” J. Petrol. 58, 2403–2428 (2017).

    Article  Google Scholar 

  27. Yu. B. Shapovalov, N. S. Gorbachev, A. V. Kostyuk, and D. M. Sultanov, “Geochemical features of carbonatites of the Fennoscandian Shield,” Dokl. Earth Sci. 463, 833–838 (2015).

    Article  Google Scholar 

  28. E. V. Sharkov, O. A. Bogatikov, and I. S. Krasivskaya, “The role of mantle plumes in the Early Precambrian tectonics of the Eastern Baltic Shield,” Geotectonics 34 (2), 85–105 (2000).

    Google Scholar 

  29. G. J. Simandl, “Geology and market-dependent significance of rare earth element resources,” Mineral. Deposita 49, 889–904 (2014).

    Article  Google Scholar 

  30. G. J. Simandl and S. Paradis, “Carbonatites: related ore deposits, resources, footprint, and exploration methods,” Appl. Earth Sci.: Trans. Inst. Mining Metallurg. 127, 123–152 (2018).

    Article  Google Scholar 

  31. N. V. Sobolev, Deep Inclusions in Kimberlites and Problems of the Upper Mantle Composition (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  32. C. Tschegg, T. Ntaflos, V. V. Akinin, and C. Hauzenberger, “Carbonate–rich melt infiltration in peridotite xenoliths from the Eurasian–North American modern plate boundary (Chersky Range, Yakutia),” Contrib. Mineral. Petrol. 164, 441–455 (2012).

    Article  Google Scholar 

  33. P. L. Verplanck, A. N. Mariano, and A. Mariano, “Rare earth element ore geology of carbonatites,” Rev. Econ. Geol. 18 (5), 32 (2016).

    Google Scholar 

  34. Y. Weiss, R. Kessel, W. L. Griffin, I. Kiflawi, O. Klein-BenDavid, D. R. Bell, J. W. Harris, and O. Navon, “A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea,” Lithos. 112 (2), 660–674 (2009).

    Article  Google Scholar 

  35. D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Chloride–carbonate fluid in diamonds from the eclogite xenolith,” Dokl. Earth Sci. 415 (6), 961–964 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.K. Karandashev (Institute of Problems of Microelectronics and Ultrapure Materials, Russian Academy of Sciences) for fruitful cooperation. E. Ravna (UiT The Arctic University of Norway) and K. Kullerud (Norwegian Mining Museum) are thanked for conducting joint fieldwork and for useful discussions. The authors highly appreciate valuable recommendations and constructive criticism provided by O.G. Safonov.

Funding

This study was carried out under government-financed research project AAAA-A18-118020590140-7 for the Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, and was supported during its various phases by the Russian Foundation for Basic Research, project nos. 12-05-00777a and 14-04-00752a, and by the Norway–NWRussia Initiation of Project on Alkaline Rocks in 2009–2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kostyuk, N. S. Gorbachev or A. N. Nekrasov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostyuk, A.V., Gorbachev, N.S. & Nekrasov, A.N. Petrogenesis of Garnet-Bearing Carbonatite in the Tromsø Nappe, Norway. Geochem. Int. 59, 801–812 (2021). https://doi.org/10.1134/S0016702921080036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080036

Keywords:

Navigation