Skip to main content

Physicogeochemical Evolution of Melts of Superplumes Uplift from the Lower Mantle to the Transition Zone: Experiment at 26 and 20 GPa


A radical transformation of the liquidus structure of the MgO–FeO–CaO–SiO2 system of thermochemical superplumes formed in the Mg–Fe postperovskite-bearing layer D” at the boundary with the Earth’s core during its ascent in the host material of the Mg–Fe bridgmanite-bearing lower mantle to the Mg–Fe ringwoodite-bearing transition zone crossing the 670-km seismic boundary was studied experimentally at 26 and 20 GPa and theoretically. The peritectic reactions of both lower mantle Mg–Fe-bridgmanite with the formation of wüstite and stishovite, and the reactions of Mg–Fe ringwoodite and Mg–Fe akimotoite coupled under the conditions of the transition zone and resulting in the formation of wüstite and stishovite, control the fractional ultramafic–mafic evolution of melts of superplumes in thermobarogradient fields at the corresponding depths of the mantle. The article also discusses the evolutionary physicogeochemical transformations of magmatic systems of superplumes at the depths of the upper mantle and the Earth’s crust with their transformation into “hot fields” with chambers of olivine–basaltic melts transported by “small plumes” into the lithosphere. It is shown that the physicochemical mechanisms and regularities of the ultramafic–mafic evolution of the superplume matter, as well as the Earth’s mantle, are provided by the liquidus structure of the MgO–FeO–CaO–Na2O–Al2O3–SiO2 system. In this case, the role of the boundary system MgO–FeO–CaO–SiO2 is important for the conditions of the lower mantle and transition zone,. The fractional crystallization mode promotes an increase in the concentrations of Na2O and Al2O3 in residual melts and their physicochemical significance at shallower depths. The same systems and mechanisms are applicable to the evolution of the global magma ocean and local mantle chambers of magmatism and diamond formation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.


  1. 1

    M. Akaogi, “Phase transitions of minerals in the transition zone and upper part of the lower mantle,” Advances in High-Pressure Mineralogy, Ed. by E. Ontani, The Geol. Soc. Am. Spec. Pap. 421, 1–13 (2007).

  2. 2

    D. L. Anderson, The Theory of the Earth (Blackwell Sci. Publ., Cambridge–Boston, (1989).

    Google Scholar 

  3. 3

    A. V. Bobrov and Yu. A. Litvin, “Mineral equilibria of diamond-forming carbonate–silicate systems,” Geochem. Int. 49 (13), 1267–1363 (2011).

    Article  Google Scholar 

  4. 4

    I. A. Campbell and R. W. Griffiths, “The changing nature of mantle hotspots through time: implication to chemical evolution of the mantle,” J. Geol. 92, 497–523 (1992).

    Article  Google Scholar 

  5. 5

    I. A. Campbell and R. W. Griffiths, “Did the formation of D” cause the Archean–Proterozoic transition?” Earth Planet. Sci. Lett. 388, 1–8 (2014).

    Article  Google Scholar 

  6. 6

    I. H. Campbell, “Large igneous provinces and the mantle plume hypothesis,” Elements 1 (5), 265–269 (2005).

    Article  Google Scholar 

  7. 7

    D. A. Clague, J. G. Moore, J. E. Dixon, and W. B. Friesen, “Petrology of submarin lavas from Kilauea’s Puna Ridge, Hawaii,” J. Petrol. 36, 299–349 (1995).

    Article  Google Scholar 

  8. 8

    K. C. Condie, Mantle Plumes and their Record in Earth History (Cambridge University Press, 2001).

    Book  Google Scholar 

  9. 9

    R. S. Dietz, “Continent and ocean basin evolution by spreading of the sea floor,” Nature 190 (4779), 854–857 (1961).

    Article  Google Scholar 

  10. 10

    N. L. Dobretsov, “Global geodynamic evolution of the Earth and global geodynamic models,” Russ. Geol. Geophys. 51(6), 562–610 (2010).

    Google Scholar 

  11. 11

    N. L. Dobretsov, A. G. Kirdyashkin, and A. A. Kirdyashkin, Deep Gepdynamics (GEO, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  12. 12

    N. L. Dobretsov, A. A. Kirdyashkin, A. G. Kirdyashkin, V. A. Vernikovskii, and I. N. Gladkov, “Modelling of thermochemical plumes and implications for the origin of the Siberian traps,” Lithos 100, 66–92 (2008).

    Article  Google Scholar 

  13. 13

    A. M. Dziewonski, “Mapping the lower mantle, determination of lateral heterogeneity up to degree and order 6,” J. Geophys. Res. B89, 5929–5952 (1984).

    Article  Google Scholar 

  14. 14

    A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth model,” Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  15. 15

    O. B. Fabrichnaya, “Thermodynamic data for phase in the FeO–MgO–SiO2 system and phase relations in the mantle transition zone,” Phys. Chem. Minerals. 22, 323–332 (1995).

    Article  Google Scholar 

  16. 16

    G. Fiquet, F. Guyot, and J. Badro, “The Earth’s lower mantle and core,” Elements 4, 177–182 (2008).

    Article  Google Scholar 

  17. 17

    D. J. Frost, B. T. Poe, R. G. Tronnes, C. Libske, F. Duba, and D. C. Rubie, “A new large-volume multianvil system,” Phys. Earth Planet. Inter. 143, 507–514 (2004).

    Article  Google Scholar 

  18. 18

    Y. Fucao, S. Maruyama, S. Obayashi, and H. Inoue, “Geological implication of the whole mantle P-wave tomography,” J. Geol. Soc. Japan. 100, 4–23 (1994).

    Article  Google Scholar 

  19. 19

    E. M. Galimov, “Isotope fractionation related to kimberlite magmatism and diamond formation,” Geochim. Cosmochim. Acta 55, 1697–1708 (1991).

    Article  Google Scholar 

  20. 20

    T. Gasparik and Yu. A. Litvin, “Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle,” Lithos 60 (3–4), 129–143 (2002).

    Article  Google Scholar 

  21. 21

    H. H. Hess, “History of ocean basins,” Petrologic Studies: a Volume in Honor of A.F. Buddington, Ed. by A. E. J. Engel; L. J. Harold, and B. F. Leonard (Geol. Soc. Amer., Boulder, 1962), pp. 599–620.

    Google Scholar 

  22. 22

    T. Irifune and T. Tsuchia, “Mineralogy of the Earth – phase transitions and mineralogy of the lower mantle,” In Treatice on Geophysics (Elsevier, 2007), pp. 33–62.

    Google Scholar 

  23. 23

    L. Ismailova, E. Bykova, M. Bykov, et al., “Stability of Fe–Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite,” Sci. Adv. 2, e1600427 (2016).

    Article  Google Scholar 

  24. 24

    E. Ito and E. Takahashi, “Postspinel transformation of the system Mg2SiO4–Fe2SiO4 and some geophysical implications,” J. Geophys. Res. 94, 10637–10646 (1989).

    Article  Google Scholar 

  25. 25

    F. V. Kaminsky, Mineralogy and Geochemistry of Lower Mantle (GEOKHI, Moscow, 2011) [in Russian].

    Google Scholar 

  26. 26

    F. Kaminsky, “Mineralogy of the lower mantle: a review of ’super–deep’ mineral inclusions in diamond,” Earth Sci. Rev. 110, 127–147 (2012).

    Article  Google Scholar 

  27. 27

    F. V. Kaminsky, The Earth’s Lower Mantle. Composition and Structure (Spinger Geology, 2017).

  28. 28

    F. V. Kaminsky, G. K. Khachatryan, P. Andreazza, D. Araujo, and W. I. Griffin, “Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil,” Lithos 112S (2), 833–842 (2009).

    Article  Google Scholar 

  29. 29

    T. Katsura, A. Yoneda, D. Yamazaki, T. Yoshino, and E. Ito, “Adiabatic temperature profile in the mantle,” Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  30. 30

    V. E. Khain, “Constructing a truly global model of Earth’s dynamics: basic principles,” Russ. Geol. Geophys. 51 (6), 587–591 (2010).

    Article  Google Scholar 

  31. 31

    A. A. Kirdyashkin, N. L. Dobretsov, and A. G. Kirdyashkin, “Heat and mass transfer in a thermochemical plume under an oceanic plate far from the mid-ocean ridge axis,” Izv., Phys. Solid Earth 44 (6), 456–468 (2008).

    Article  Google Scholar 

  32. 32

    A. A. Kirdyashkin, A. G. Kirdyashkin, V. E. Distanov, and I. N. Gladkov, “Geodynamic regimes of thermochemical mantle plumes,” Russ. Geol. Geophys. 57 (6), 858–867 (2016).

    Article  Google Scholar 

  33. 33

    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, S. V. Budnikov, D. Z. Zhuravlev, I. K. Kozakov, A. B. Kotov, E. Yu. Rytsk, and E. B. Sal’nikova, “Magmatism as factor of crust evolution in the Central Asian Foldbelt: Sm-Nd isotopic data,” Geotectonics 33 (3), 191–208 (1999).

    Google Scholar 

  34. 34

    V. I. Kovalenko, V. V. Yarmolyuk, I. A. Andreeva, N. A. Ashikhmina, A. M. Kozlovsky, E. A. Kudryashova, V. A. Kuznetsov, E. N. Listratova, D. A. Lykhin, and A. V. Nikiforova, Magma Types and their Sources in Earth’s History (IGEM RAN, Moscow, 2006) Vol. 2 [in Russian].

    Google Scholar 

  35. 35

    M. Kuzmin, V. Yarmolyuk, and V. Kravchinsky, “Deep geodynamics as the main mechanism of Earth’s evolution,” Nauka v Rossii, No. 6, 10–19 (2013).

  36. 36

    M. I. Kuzmin and V. V. Yarmolyuk, “Mantle plumes in Central Asia (Northeast Asia) and their role in forming endogenous deposits,” Russ Geol. Geophys. 55 (2), 120–143 (2014).

    Article  Google Scholar 

  37. 37

    M. I. Kuzmin and V. V. Yarmolyuk, “Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga,” Russ Geol. Geophys. 57 (1), 8–21 (2016)

    Article  Google Scholar 

  38. 38

    Yu. A. Litvin, Physicochemical Studies of Melting of Earth’s Deep Matter (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  39. 39

    Yu. A. Litvin, “Mantle hot spots and experiment up to 10 Gpa: alkaline reactions, carbonatization of lithospher, and new diamond-forming systems,” Geol. Geoofiz. 39 (12), 1772–1779 (1998).

    Google Scholar 

  40. 40

    Yu. A. Litvin, Genesis of Diamonds and Associated Phases (Springer, 2017).

    Book  Google Scholar 

  41. 41

    Yu. A. Litvin and A. V. Spivak, “Genesis of diamonds and paragenetic inclusions under lower mantle conditions: the liquidus structure of the parental system at 26 GPa,” Geochem. Int. 57 (2),134–150 (2019).

    Article  Google Scholar 

  42. 42

    Yu. A. Litvin and V. A. Zharikov, “Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate–silicate melts at 5–7 GPa and 1200–1570°C,” Dokl. Earth Sci. 373 (5), 867–871 (2000).

    Google Scholar 

  43. 43

    Yu. A. Litvin, A. V. Spivak, and A. V. Kuzyura, “Fundamental of mantle carbonatite concept of diamond genesis,” Geochem. Int. 54 (10), 839–857 (2016).

    Article  Google Scholar 

  44. 44

    Yu. A. Litvin, A. V. Kuzyra, A. V. Bovkun, D. A. Varlamov, E. V. Limanov, and V. K. Garanin, “Genesis of diamondiferous rocks from upper-mantle xenoliths in kimberlite,” Geochem. Int. 58 (3), 245–270 (2020).

    Article  Google Scholar 

  45. 45

    Yu. A. Litvin, A. V. Kuzyura, and A. V. Spivak, “Evolution of the mantle magmatism and formation of ultrabasic–basic rock series: importance of peritectic reactions of the rock–forming minerals,” Advances in Experimental and Genetic Mineralogy, Ed. by Yu. A. Litvin and O. G. Safonov, Spec. Publ. 50th Anniversary of D.S. Korzhinskii Institute of Experimental Mineralogy of the Russian Academy of Sciences (Springer Nature, 2020), pp. 165–199.

  46. 46

    Yu. A. Litvin, A. V. Kuzyura, and E. V. Limanov, “The role of garnetization of olivine in the olivine–diopside–jadeite system in the ultramafic–mafic evolution of upper-mantle magmatism (experiment at 6 GPa),” Geochem. Int. 57 (10), 1045–1065 (2019).

    Article  Google Scholar 

  47. 47

    S. Maaloe, Principles of Igneous Petrology (Springer, 1985).

    Book  Google Scholar 

  48. 48

    W. L. Mao, H.-K. Mao, W. Sturhahn, J. Zhao, V. B. Prakapenka, Y. Meng, J. Shu, Y. Fei, and R. J. Hemley, “Iron-rich post-perovskite and the origin of ultralow-velocity zones,” Science 312, 564–565 (2006).

    Article  Google Scholar 

  49. 49

    S. Maruyama, “Plume tectonics,” J. Geol. Soc. Japan. 100, 24–49 (1994).

    Article  Google Scholar 

  50. 50

    S. Maruyama, M. Santosh, and B. F. Windsley, “Superplume, supercontinent and post–perovskite: mantle dynamics and anti-plate tectonics on the core–mantle boundary,” Gondwana Res. 11, 7–37 (2007).

    Article  Google Scholar 

  51. 51

    M. Mathias, J. C. Siebert, and P. C.Rickwood, “Some aspects of the mineralogy and petrology of ultramafic xenoliths in kimberlite,” Contrib. Mineral. Petrol. 26, 75–125 (1970).

    Article  Google Scholar 

  52. 52

    W. I. Morgan, “Convection plumes in the lower mantle,” Nature 230, 42–43 (1971).

    Article  Google Scholar 

  53. 53

    W. J. Morgan, “Deep mantle convection plumes and plate motion,” Bull. Amer. Assoc. Petrol. Geol. 56, 203–2013 (1972).

    Google Scholar 

  54. 54

    M. Murakami, K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi, “Post-perovskite phase transition in MgSiO3,” Science 304, 855–858 (2004).

    Article  Google Scholar 

  55. 55

    New Global Tectonics, Ed. by L. P. Zonenshain and A. A. Kovalev, (Mir, Moscow, 1974) [in Russian].

  56. 56

    N. Nishiyama and T. Yagi, “Phase relation and mineral chemistry in pyrolite to 2200°C under the lower mantle pressures and implications for dynamics of mantle plumes,” J. Geophys. Res. 108, 2255–2261 (2003).

    Google Scholar 

  57. 57

    M. J. O’Hara, “The bearing of phase equilibria studies on synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks,” Earth Sci. Rev. 4, 69–133 (1968).

    Article  Google Scholar 

  58. 58

    R. K. O’Nions, P. J. Hamilton, and N. M. Evensen, “The chemical evolution of the Earth’s mantle,”Sci. Amer. 202 (5), 91–101 (1980).

    Google Scholar 

  59. 59

    A. R. Oganov and S. Ono, “Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’ layer,” Nature. 430, 445–448 (2004).

    Article  Google Scholar 

  60. 60

    A. R. Oganov and S. Ono, “The high-pressure phase of alumina and implications for Earth’s D” layer,” Proc. Natl. Acad. Sci. USA. 102 (31), 10828–10831 (2005).

    Article  Google Scholar 

  61. 61

    P. Olson, G. Schubert, and C. Anderson, “Plume formation in the D"-layer and the roughness of the core–mantle boundary,” Nature 327, 409–413 (1987).

    Article  Google Scholar 

  62. 62

    L. S. Palatnik and A. I. Landau, Phase Equilibria in Mutlicomponent Systems (KHGU, Khar’kov, 1961) [in Russian].

    Google Scholar 

  63. 63

    S. A. Posypaiko, E. A. Tarasevich, E. A. Alekseeva, N. A. Vasina, E. S. Gryzlova, A. S. Trunin, G. E. Shter, A. S. Kosmynin, and L. M. Vasil’chenko, Prediction of Chemical Interaction in the Multicomponent Systems (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  64. 64

    D. C. Presnall, “Effect of pressure on the fractional crystallization of basaltic magma,” In Mantle Petrology: Field Observation and High Pressure Experimentation. A Tribute to Francis R. (Joe) Boyd, Ed. by Y. Fey, C. M. Bertka, B. O. Mysen, The Geochem. Soc. Spec. Publ., No. 6, (University of Houston, Houston, 1999), pp. 209–224.

  65. 65

    P. N. Rhines, Phase Diagrams in Metallurgy: Their Development and Application (McGraw–Hill Book Company, London, 1956).

    Google Scholar 

  66. 66

    A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  67. 67

    N. V. Sobolev, Mantle Inclusions in Kimberlites and Problem of Upper Mantle Composition (Nauka, Moscow 1974) [in Russian].

    Google Scholar 

  68. 68

    Z. V. Spetsius and L. A. Taylor, Diamonds of Siberia. Photographic Evidence for Their Origin (Tranquility Base Press, Lenoir City, 2008).

  69. 69

    A. Spivak and Yu. Litvin, Evolution of Magmatic and Diamond-Forming Systems of the Earth’s Lower Mantle (Springer Geology, 2019).

    Book  Google Scholar 

  70. 70

    T. Stachel, G. P. Brey, and J. W. Harris, “Inclusions in sublithospheric diamonds: glimpses of deep Earth,” Elements 1 (2), 73–78 (2005).

    Article  Google Scholar 

  71. 71

    I. Takayuki, H. Kojitani, and M. Akaogi, “Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite–perovskite transition in MgSiO3: precise comparison by high-pressure high-temperature experiments with multi-sample cell technique,” Earth Planet. Sci. Lett. 309, 185–197 (2011).

    Article  Google Scholar 

  72. 72

    A. Taylor and M. Anand, “Diamonds: time capsules from the Siberian mantle,” Chem. Erde-Geochim. 64, 1–74 (2004).

    Article  Google Scholar 

  73. 73

    N. Tomioka and K. Fujino, “Akimotoite, (Mg,Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite,” Am. Mineral. 84, 267–271 (1999).

    Article  Google Scholar 

  74. 74

    O. Tschauner, C. Ma, J. R. Beckett, C. Prescher, V. B. Prakapenka, and G. R. Rossman, “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” Science 346 (6213), 1100–1102 (2014).

    Article  Google Scholar 

  75. 75

    H. S. Urey, The Planets (Yale Univ. Press, New Haven, 1952).

    Google Scholar 

  76. 76

    H. S. Urey, “Evidence regarding the origin of the Earth,” Geochim. Cosmochim. Acta. 26, 1–13 (1962).

    Article  Google Scholar 

  77. 77

    A. P. Vinogradov, “The origin of the material of the Earth’s crust,” Geochemistry, No. 1, 1–32 (1961).

    Google Scholar 

  78. 78

    M. J. Walter, “Melting of garnet peridotite and the origin of komatiite and depleted lithosphere,” J. Petrol. 39 (1), 29–60 (1998).

    Article  Google Scholar 

  79. 79

    J. T. Wilson, “A possible origin of the Hawaaiian Islands,” Can. J. Phys. 41, 863–866 (1963).

    Article  Google Scholar 

  80. 80

    J. A. Wood, “Chondrites and origin of the terrestrial planets,” Nature 194, 127–130 (1962).

    Article  Google Scholar 

  81. 81

    V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, I. K. Kozakov, A. B. Kotov, and E. B. Sal’nikova, “Isotopic composition, sources of crustal magmatism, and crustal structure of caledonides of the Ozernaya Zone, Central Asian Foldbelt,” Dokl. Earth Sci. 387A (9). 1043–1047 (2002).

    Google Scholar 

  82. 82

    H. S. Yoder and C. E. Tilley, “Origin of basalt magmas: an experimental study of natural and synthetic rock systems,” J. Petrol. 3 (3), 342–532 (1962).

    Article  Google Scholar 

  83. 83

    H. S. Yoder and C. E. Tilley, Generation of Basaltic Magma (Nat. Acad. Sci. Washington, 1976).

    Google Scholar 

  84. 84

    A. M. Zakharov, Physicochemical Diagrams of Double and Triple Systems (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  85. 85

    D. A. Zedgenizov, A. L. Ragozin, A. L. Kalinina, and H. Kagi, “The mineralogy of Ca–rich inclusions in sublithospheric diamonds,” Geochem. Int. 54(10), 890–900 (2016).

    Article  Google Scholar 

  86. 86

    D. Zhao, “Seismic images under 60 hotspots: Search for mantle plumes,” Gondwana Res., No. 12, 335–355 (2007).

  87. 87

    L. P. Zonenshain and M. I. Kuzmin, “Within-plate magmatism and its significance for understanding processes in Earth’s mantle,” Geotectonics, No. 1, 28–45 (1983).

    Google Scholar 

  88. 88

    L. P. Zonenshain, M. I. Kuzmin, and N. Yu. Bocharova, “Hot-field tectonics,” Tectonophysics 199, 165–192 (1991).

    Article  Google Scholar 

Download references


This study was supported by the Presidium of the Russian Academy of Sciences (program no. I.08.P “Physics of Condensed Matter and Materials of a New Generation” and was performed as a part of thematic projects of the Institute of Experimental Mineralogy, Russian Academy of Sciences (nos. AAAA-A13-118020590140-7 and AAAA-A18-118021990093-9).

Author information



Corresponding author

Correspondence to Yu. A. Litvin.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Litvin, Y.A., Spivak, A.V. & Kuzyura, A.V. Physicogeochemical Evolution of Melts of Superplumes Uplift from the Lower Mantle to the Transition Zone: Experiment at 26 and 20 GPa. Geochem. Int. 59, 661–682 (2021).

Download citation


  • mantle
  • lithosphere
  • magmatism
  • thermochemical superplumes
  • MgO–FeO–CaO–SiO2 system
  • physicochemical experiment
  • liquidus structure
  • peritectic reactions of bridgmanite
  • ringwoodite
  • and akimotoite
  • fractional ultramafic–mafic evolution
  • hot spots
  • small plumes
  • oceanic basalt islands and plateaus